Skip to main content
Log in

Research trends in electron-doped cuprate superconductors

  • Invited Review
  • Condensed Matter Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this review, we look back on some intriguing and puzzling issues in electron-doped cuprate superconductors, such as electron- hole asymmetry, two types of carriers, quantum critical points, order-parameter symmetry, etc. The necessity of study on this family is invoked in comparison with the hole-doped counterparts from several aspects. The related progress, especially in last few years, has been outlined point to point, as well as other hot topics like the discovery of ambipolar superconductors, the applications in superconducting electronics, and the emergency of superconductivity in parent compounds. In perspective, the utilization of blooming advanced techniques, electric double layer transistor and combinatorial film deposition, will bring some new insights into the mechanism such as electron-doped cuprate superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bednorz J G, Müller K A. Possible high T c superconductivity in the Ba-La-Cu-O system. Z Phys B: Condens Matter, 1986, 64: 189–193

    Article  ADS  Google Scholar 

  2. Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature, 1993, 363: 56–58

    Article  ADS  Google Scholar 

  3. Gao L, Xue Y Y, Chen F, et al. Superconductivity up to 164 K in HgBa2Ca m-1CumO2m+2+δ(m =1, 2, and 3) under quasihydrostatic pressures. Phys Rev B, 1994, 50: 4260–4263

    Article  ADS  Google Scholar 

  4. Tokura Y, Takagi H, Uchida S. A superconducting copper oxide compound with electrons as the charge carriers. Nature, 1989, 337: 345–347

    Article  ADS  Google Scholar 

  5. Ayoub N Y, Markert J T, Early E A, et al. A comparative compositional study of Ln2-x MxCuO4-y electron-doped superconductors. Phys C, 1990, 165: 469–474

    Article  ADS  Google Scholar 

  6. Beille J, Gerber A, Grenet T, et al. Superconducting properties of Ln2-x MxCuO4-y (Ln = Pr, Nd, Sm, Eu, M = Ce, Th) under pressure up to 100-kbar. J Less-Common Met, 1990, 164: 800–807

    Article  Google Scholar 

  7. Dalichaouch Y, Lee B W, Seaman C L, et al. Upper critical-field of a Sm1.85Ce0.15CuO4-y single-crystal-interaction between superconductivity and antiferromagnetic order in copper oxides. Phys Rev Lett, 1990, 64: 599–602

    Article  ADS  Google Scholar 

  8. Dalichaouch Y, Deandrade M C, Maple M B. Synthesis, transport, and magnetic-properties of Ln2-x CexCuO4-y single-crystals (Ln = Nd, Pr, Sm). Phys C, 1993, 218: 309–315

    Article  ADS  Google Scholar 

  9. Armitage N P, Fournier P, Greene R L. Progress and perspectives on electron-doped cuprates. Rev Mod Phys, 2010, 82: 2421–2487

    Article  ADS  Google Scholar 

  10. Witt T J. Accurate determination of 2e/h in Y-Ba-Cu-O josephson junctions. Phys Rev Lett, 1988, 61: 1423–1426

    Article  ADS  Google Scholar 

  11. Vanbentum P J M, Hoevers H F C, Vankempen H, et al. Determination of the energy-gap in YBa2Cu3O7-δ by tunneling, far infrared reflection and Andreev reflection. Phys C, 1988, 153: 1718–1723

    Article  ADS  Google Scholar 

  12. Gough C E, Colclough M S, Forgan E M, et al. Flux-quantization in a high-T c superconductor. Nature, 1987, 326: 855–855

    Article  ADS  Google Scholar 

  13. Gammel P L, Polakos P A, Rice C E, et al. Little-parks oscillations of T c in patterned microstructures of the oxide superconductor YBa2Cu3O7-experimental limits on fractional-statistics-particle theories. Phys Rev B, 1990, 41: 2593–2596

    Article  ADS  Google Scholar 

  14. Campuzano J C, Ding H, Norman M R, et al. Direct observation of particle-hole mixing in the superconducting state by angle-resolved photoemission. Phys Rev B, 1996, 53: 14737–14740

    Article  ADS  Google Scholar 

  15. Takigawa M, Hammel P C, Heffner R H, et al. Spin susceptibility in superconducting YBa2Cu3O7 from Cu-63 knight-shift. Phys Rev B, 1989, 39: 7371–7374

    Article  ADS  Google Scholar 

  16. Hardy W N, Bonn D A, Morgan D C, et al. Precision-measurements of the temperature-dependence of lambda in YBa2Cu3O6.95: Strong evidence for nodes in the gap function. Phys Rev Lett, 1993, 70: 3999–4002

    Article  ADS  Google Scholar 

  17. Damascelli A, Hussain Z, Shen Z X. Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys, 2003, 75: 473–541

    Article  ADS  Google Scholar 

  18. Tsuei C C, Kirtley J R. Pairing symmetry in cuprate superconductors. Rev Mod Phys, 2000, 72: 969–1016

    Article  ADS  Google Scholar 

  19. Wright D A, Emerson J P, Woodfield B F, et al. Low-temperature specific heat of YBa2Cu3O7-δ , 0≤δ≤0.2: Evidence for d-Wave pairing. Phys Rev Lett, 1999, 82: 1550–1553

    Article  ADS  Google Scholar 

  20. Sutherland M, Hawthorn D G, Hill R W, et al. Thermal conductivity across the phase diagram of cuprates: Low-energy quasiparticles and doping dependence of the superconducting gap. Phys Rev B, 2003, 67: 174520

    Article  ADS  Google Scholar 

  21. Paglione J, Greene R L. High-temperature superconductivity in iron-based materials. Nat Phys, 2010, 6: 645–658

    Article  Google Scholar 

  22. Scalapino D J. A common thread: The pairing interaction for unconventional superconductors. Rev Mod Phys, 2012, 84: 1383–1417

    Article  ADS  Google Scholar 

  23. Li S, Yang H, Fang D L, et al. Strong coupling superconductivity and prominent superconducting fluctuations in the new superconductor Bi4O4S3. Sci China-Phys Mech Astron, 2013, 56: 2019–2025

    Article  ADS  Google Scholar 

  24. Chen R Y, Dong T, Wang H P, et al. Ultrafast quasiparticle dynamics in spin-density-wave LaOFeAs single crystal. Sci China-Phys Mech Astron, 2013, 56: 2395–2398

    Article  ADS  Google Scholar 

  25. Norman M R. The Challenge of unconventional superconductivity. Science, 2011, 332: 196–200

    Article  ADS  Google Scholar 

  26. Norman M R. Chasing arcs in cuprate superconductors. Science, 2009, 325: 1080–1081

    Article  ADS  Google Scholar 

  27. Cooper R A, Wang Y, Vignolle B, et al. Anomalous criticality in the electrical resistivity of La2-x SrxCuO4. Science, 2009, 323: 603–607

    Article  ADS  Google Scholar 

  28. Jin K, Butch N P, Kirshenbaum K, et al. Link between spin fluctuations and electron pairing in copper oxide superconductors. Nature, 2011, 476: 73–75

    Article  Google Scholar 

  29. Butch N P, Jin K, Kirshenbaum K, et al. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor. P Natl Acad Sci USA, 2012, 109: 8440–8444

    Article  ADS  Google Scholar 

  30. Tohyama T. Recent progress in physics of high-temperature superconductors. Jpn J Appl Phys, 2012, 51: 010004

    Article  ADS  Google Scholar 

  31. Moritz B, Johnston S, Devereaux T P, et al. Investigation of particle-hole asymmetry in the cuprates via electronic raman scattering. Phys Rev B, 2011, 84: 235114

    Article  ADS  Google Scholar 

  32. Ishii K, Fujita M, Sasaki T, et al. High-energy spin and charge excitations in electron-doped copper oxide superconductors. Nat Commun, 2014, 5: 3714

    ADS  Google Scholar 

  33. Tanatar M A, Ni N, Thaler A, et al. Pseudogap and its critical point in the heavily doped Ba(Fe1-x Cox)2As2 from c-axis resistivity measurements. Phys Rev B, 2010, 82: 134528

    Article  ADS  Google Scholar 

  34. Middey S, Kareev M, Meyers D, et al. Epitaxial stabilization of ultra thin films of electron doped manganites. Appl Phys Lett, 2014, 104: 202409

    Article  ADS  Google Scholar 

  35. Saadaoui H, Salman Z, Luetkens H, et al. The phase diagram of electron-doped La2-x CexCuO4-δ . Nat Commun, 2015, 6: 6041

    Article  ADS  Google Scholar 

  36. Marshall D S, Dessau D S, Loeser A G, et al. Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ : Angle- resolved photoemission results. Phys Rev Lett, 1996, 76: 4841–4844

    Article  ADS  Google Scholar 

  37. Ding H, Yokoya T, Campuzano J C, et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-T c superconductors. Nature, 1996, 382: 51–54

    Article  ADS  Google Scholar 

  38. Yu W, Higgins J S, Bach P, et al. Transport evidence of a magnetic quantum phase transition in electron-doped high-temperature superconductors. Phys Rev B, 2007, 76: 020503

    Article  ADS  Google Scholar 

  39. Dagan Y, Qazilbash M M, Hill C P, et al. Evidence for a quantum phase transition in Pr2-x CexCuO4-δ from transport measurements. Phys Rev Lett, 2004, 92: 167001

    Article  ADS  Google Scholar 

  40. Motoyama E M, Yu G, Vishik I M, et al. Spin correlations in the electron-doped high-transition-temperature superconductor Nd2-x Cex CuOδ . Nature, 2007, 445: 186–189

    Article  ADS  Google Scholar 

  41. Sachdev S. Where is the quantum critical point in the cuprate superconductors? Phys Status Solidi B, 2010, 247: 537–543

    Article  ADS  Google Scholar 

  42. Biswas A, Fournier P, Smolyaninova V N, et al. Gapped tunneling spectra in the normal state of Pr2-x CexCuO4. Phys Rev B, 2001, 64: 104519

    Article  ADS  Google Scholar 

  43. Alff L, Krockenberger Y, Welter B, et al. A hidden pseudogap under the “dome” of superconductivity in electron-doped high-temperature superconductors. Nature, 2003, 422: 698–701

    Article  ADS  Google Scholar 

  44. Dagan Y, Qazilbash M M, Greene R L. Tunneling into the normal state of Pr2-x CexCuO4. Phys Rev Lett, 2005, 94: 187003

    Article  ADS  Google Scholar 

  45. Shan L, Wang Y L, Huang Y, et al. Distinction between the normal- state gap and superconducting gap of electron-doped cuprates. Phys Rev B, 2008, 78: 014505

    Article  ADS  Google Scholar 

  46. Startseva T, Timusk T, Puchkov A V, et al. Temperature evolution of the pseudogap state in the infrared response of underdoped La2-x SrxCuO4. Phys Rev B, 1999, 59: 7184–7190

    Article  ADS  Google Scholar 

  47. Berg E, Fradkin E, Kivelson S A. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nat Phys, 2009, 5: 830–833

    Article  Google Scholar 

  48. Lawler M J, Fujita K, Lee J, et al. Intra-unit-cell electronic nematicity of the high-T c copper-oxide pseudogap states. Nature, 2010, 466: 347–351

    Article  ADS  Google Scholar 

  49. Fausti D, Tobey R I, Dean N, et al. Light-induced superconductivity in a stripe-ordered cuprate. Science, 2011, 331: 189–191

    Article  ADS  Google Scholar 

  50. Mesaros A, Fujita K, Eisaki H, et al. Topological defects coupling smectic modulations to intra-unit-cell nematicity in cuprates. Science, 2011, 333: 426–430

    Article  ADS  Google Scholar 

  51. Daou R, Chang J, LeBoeuf D, et al. Broken rotational symmetry in the pseudogap phase of a high-T c superconductor. Nature, 2010, 463: 519–522

    Article  ADS  Google Scholar 

  52. Neto E H D S, Comin R, He F Z, et al. Charge ordering in the electron- doped superconductor Nd2-x CexCuO4. Science, 2015, 347: 283–285

    Google Scholar 

  53. Onose Y, Taguchi Y, Ishikawa T, et al. Anomalous pseudogap formation in a nonsuperconducting crystal of Nd1.85Ce0.15CuO4+γ : Implication of charge ordering. Phys Rev Lett, 1999, 82: 5120–5123

    Article  ADS  Google Scholar 

  54. Jin K, He G, Zhang X H, et al. Anomalous magnetoresistance in the spinel superconductor LiTi2O4. Nat Commun, 2015, 6: 7183

  55. LeBoeuf D, Doiron-Leyraud N, Levallois J, et al. Electron pockets in the Fermi surface of hole-doped high-T c superconductors. Nature, 2007, 450: 533–536

    Article  ADS  Google Scholar 

  56. Doiron-Leyraud N, Proust C, LeBoeuf D, et al. Quantum oscillations and the Fermi surface in an underdoped high-T c superconductor. Nature, 2007, 447: 565–568

    Article  ADS  Google Scholar 

  57. Sebastian S E, Harrison N, Balakirev F F, et al. Normal-state nodal electronic structure in underdoped high-T c copper oxides. Nature, 2014, 511: 61–64

    Article  ADS  Google Scholar 

  58. Riggs S C, Vafek O, Kemper J B, et al. Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor. Nat Phys, 2011, 7: 332–335

    Article  Google Scholar 

  59. Jiang W, Mao S N, Xi X X, et al. Anomalous transport-properties in superconducting Nd1.85Ce0.15Cuoδ . Phys Rev Lett, 1994, 73: 1291–1294

    Article  ADS  Google Scholar 

  60. Armitage N P, Ronning F, Lu D H, et al. Doping dependence of an n-type cuprate superconductor investigated by angle-resolved photoemission spectroscopy. Phys Rev Lett, 2002, 88: 257001

    Article  ADS  Google Scholar 

  61. Jin K, Zhu B Y, Wu B X, et al. Low-temperature Hall effect in electron- doped superconducting La2-x CexCuO4 thin films. Phys Rev B, 2008, 78: 174521

    Article  ADS  Google Scholar 

  62. Jin K, Zhu B Y, Yuan J, et al. Evolution of charge carriers for transport in electron-doped cuprate superconductor La1.89Ce0.11CuO4 thin films. Phys Rev B, 2007, 75: 214501

    Article  ADS  Google Scholar 

  63. Charikova T B, Shelushinina N G, Harus G I, et al. Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd2-x CexCuO4+δ . Phys C, 2012, 483: 113–118

    Article  ADS  Google Scholar 

  64. Jin K, Wu B X, Zhu B Y, et al. Sign reversal of the Hall resistance in the mixed-state of La1.89Ce0.11CuO4 and La1.89Ce0.11(Cu0.99Co0.01)O4 thin films. Phys C, 2012, 479: 53–56

    Article  ADS  Google Scholar 

  65. Lin J, Millis A J. Theory of low-temperature Hall effect in electron-doped cuprates. Phys Rev B, 2005, 72: 214506

    Article  ADS  Google Scholar 

  66. Xiang T, Luo H G, Lu D H, et al. Intrinsic electron and hole bands in electron-doped cuprate superconductors. Phys Rev B, 2009, 79: 014524

    Article  ADS  Google Scholar 

  67. Jiang W, Mao S, Xi X, et al. Anomalous transport properties in superconducting Nd1.85Ce0.15CuOδ . Phys Rev Lett, 1994, 73: 1291–1294

    Article  ADS  Google Scholar 

  68. Horio M, Adachi T, Mori Y, et al. Suppression of the antiferromagnetic pseudogap in the electron-doped high-temperature superconductor by “protect annealing”. arXiv:1502.03395

  69. Rotundu C R, Struzhkin V V, Somayazulu M S, et al. High-pressure effects on single crystals of electron-doped Pr2-x CexCuO4. Phys Rev B, 2013, 87: 024506

    Article  ADS  Google Scholar 

  70. Segawa K, Ando Y. Doping n-type carriers by La substitution for Ba in the YBa2Cu3Oy system. Phys Rev B, 2006, 74: 100508

    Article  ADS  Google Scholar 

  71. Zeng S W, Wang X, Lu W M, et al. Metallic state in La-doped YBa2Cu3Oy thin films with n-type charge carriers. Phys Rev B, 2012, 86: 045124

    Article  ADS  Google Scholar 

  72. Segawa K, Kofu M, Lee S H, et al. Zero-doping state and electron-hole asymmetry in an ambipolar cuprate. Nat Phys, 2010, 6: 579–583

    Article  Google Scholar 

  73. Sachdev S. Quantum criticality: Competing ground states in low dimensions. Science, 2000, 288: 475–480

    Article  ADS  Google Scholar 

  74. von Lohneysen H, Rosch A, Vojta M, et al. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev Mod Phys, 2007, 79: 1015–1075

    Article  ADS  Google Scholar 

  75. Jin C Q, Wang X C, Liu Q Q, et al. New quantum matters: Build up versus high pressure tuning. Sci China-Phys Mech Astron, 2013, 56: 2337–2350

    Article  ADS  Google Scholar 

  76. Leng X, Garcia-Barriocanal J, Bose S, et al. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2CaCu3O7-x films. Phys Rev Lett, 2011, 107: 027001

    Article  ADS  Google Scholar 

  77. Bollinger A T, Dubuis G, Yoon J, et al. Superconductor-insulator transition in La2-x SrxCuO4 at the pair quantum resistance. Nature, 2011, 472: 458–460

    Article  ADS  Google Scholar 

  78. Daou R, Doiron-Leyraud N, LeBoeuf D, et al. Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-T c superconductor. Nat Phys, 2009, 5: 31–34

    Article  Google Scholar 

  79. Fournier P, Mohanty P, Maiser E, et al. Insulator-metal crossover near optimal doping in Pr2-x CexCuO4: Anomalous normal-state low temperature resistivity. Phys Rev Lett, 1998, 81: 4720–4723

    Article  ADS  Google Scholar 

  80. Moriya T, Ueda K. Spin fluctuations and high temperature superconductivity. Adv Phys, 2000, 49: 555–606

    Article  ADS  Google Scholar 

  81. Rosch A. Magnetotransport in nearly antiferromagnetic metals. Phys Rev B, 2000, 62: 4945–4962

    Article  ADS  Google Scholar 

  82. Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, et al. Correlation between linear resistivity and T c in the Bechgaard salts and the pnictide superconductor Ba(Fe1-x Cox)2As2. Phys Rev B, 2009, 80: 214531

    Article  ADS  Google Scholar 

  83. Bourbonnais C, Sedeki A. Link between antiferromagnetism and superconductivity probed by nuclear spin relaxation in organic conductors. Phys Rev B, 2009, 80: 085105

    Article  ADS  Google Scholar 

  84. Taillefer L. Scattering and pairing in cuprate superconductors. Annu Rev Condens Matter Phys, 2010, 1: 51–70

    Article  ADS  Google Scholar 

  85. Jin K, Yuan J, Zhao L, et al. Coexistence of superconductivity and ferromagnetism in a dilute cobalt-doped La1.89Ce0.11CuOδ system. Phys Rev B, 2006, 74: 094518

    Article  ADS  Google Scholar 

  86. Jin K, Zhang X H, Bach P, et al. Evidence for antiferromagnetic order in La2-x CexCuO4 from angular magnetoresistance measurements. Phys Rev B, 2009, 80: 012501

    Article  ADS  Google Scholar 

  87. Fujita M, Matsuda M, Lee S H, et al. Low-energy spin fluctuations in the ground states of electron-doped Pr1-x LaCexCuO4+δ cuprate superconductors. Phys Rev Lett, 2008, 101: 107003

    Article  ADS  Google Scholar 

  88. Sedeki A, Bergeron D, Bourbonnais C. Extended quantum criticality of low-dimensional superconductors near a spin-density-wave instability. Phys Rev B, 2012, 85: 165129

    Article  ADS  Google Scholar 

  89. Jin K, Zhu B Y, Wu B X, et al. Normal-state transport in electron-doped La2-x CexCuO4 thin films in magnetic fields up to 40 Tesla. Phys Rev B, 2008, 77: 172503

    Article  ADS  Google Scholar 

  90. Tafti F F, Laliberte F, Dion M, et al. Nernst effect in the electron-doped cuprate superconductor Pr2-x CexCuO4: Superconducting fluctuations, upper critical field H c2, and the origin of the T c dome. Phys Rev B, 2014, 90: 024519

    Article  ADS  Google Scholar 

  91. Armitage N P, Lu D H, Feng D L, et al. Superconducting gap anisotropy in Nd1.85Ce0.15CuO4: Results from photoemission. Phys Rev Lett, 2001, 86: 1126–1129

    Article  ADS  Google Scholar 

  92. Tsuei C C, Kirtley J R. Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors. Phys Rev Lett, 2000, 85: 182–185

    Article  ADS  Google Scholar 

  93. Biswas A, Fournier P, Qazilbash M M, et al. Evidence of a d-to s-wave pairing symmetry transition in the electron-doped cuprate superconductor Pr2-x CexCuO4. Phys Rev Lett, 2002, 88: 207004

    Article  ADS  Google Scholar 

  94. Skinta J A, Kim M S, Lemberger T R, et al. Evidence for a transition in the pairing symmetry of the electron-doped cuprates La2-x CexCuO4-y and Pr2-x CexCuO4-y. Phys Rev Lett, 2002, 88: 207005

    Article  ADS  Google Scholar 

  95. Vojta M, Zhang Y, Sachdev S. Quantum phase transitions in d-wave superconductors. Phys Rev Lett, 2000, 85: 4940–4943

    Article  ADS  Google Scholar 

  96. Deutscher G. Andreev-saint-james reflections: A probe of cuprate superconductors. Rev Mod Phys, 2005, 77: 109–135

    Article  ADS  Google Scholar 

  97. Tanaka Y, Kashiwaya S. Theory of tunneling spectroscopy of d-wave superconductors. Phys Rev Lett, 1995, 74: 3451–3454

    Article  ADS  Google Scholar 

  98. Chesca B, Seifried M, Dahm T, et al. Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron- doped superconductor La2-x CexCuO4-y. Phys Rev B, 2005, 71: 104504

    Article  ADS  Google Scholar 

  99. Wagenknecht M, Koelle D, Kleiner R, et al. Phase diagram of the electron-doped La2-x CexCuO4 cuprate superconductor from Andreev bound states at grain boundary junctions. Phys Rev Lett, 2008, 100: 227001

    Article  ADS  Google Scholar 

  100. Kashiwaya S, Ito T, Oka K, et al. Tunneling spectroscopy of superconducting Nd1.85Ce0.15CuO4-δ . Phys Rev B, 1998, 57: 8680–8686

    Article  ADS  Google Scholar 

  101. Shan L, Huang Y, Gao H, et al. Distinct pairing symmetries in Nd1.85Ce0.15CuO4-y and La1.89Sr0.11CuO4 single crystals: Evidence from comparative tunneling measurements. Phys Rev B, 2005, 72: 144506

    Article  ADS  Google Scholar 

  102. Shan L, Huang Y, Wang Y L, et al. Weak-coupling Bardeen-Cooper-Schrieffer superconductivity in the electron-doped cuprate superconductors. Phys Rev B, 2008, 77: 014526

    Article  ADS  Google Scholar 

  103. Aprili M, Covington M, Paraoanu E, et al. Tunneling spectroscopy of the quasiparticle Andreev bound state in ion-irradiated YBa2Cu3O7-δ /Pb junctions. Phys Rev B, 1998, 57: R8139–R8142

    Article  ADS  Google Scholar 

  104. Alff L, Meyer S, Kleefisch S, et al. Anomalous low temperature behavior of superconducting Nd1.85Ce0.15CuO4-y. Phys Rev Lett, 1999, 83: 2644–2647

    Article  ADS  Google Scholar 

  105. Liu C S, Wu W C. Theory of point-contact spectroscopy in electro-doped cuprate superconductors. Phys Rev B, 2007, 76: 220504

    Article  ADS  Google Scholar 

  106. Dagan Y, Beck R, Greene R L. Dirty superconductivity in the electron- doped cuprate Pr2-x CexCuO4-δ : Tunneling study. Phys Rev Lett, 2007, 99: 147004

    Article  ADS  Google Scholar 

  107. Blumberg G, Koitzsch A, Gozar A, et al. Nonmonotonic d x2-y2 superconducting order parameter in Nd2-x CexCuO4. Phys Rev Lett, 2002, 88: 107002

    Article  ADS  Google Scholar 

  108. Mourachkine A. Andreev reflections and tunneling spectroscopy on underdoped Nd1.85Ce0.15CuO4-δ . Europhys Lett, 2000, 50: 663–667

    Article  ADS  Google Scholar 

  109. Krockenberger Y, Irie H, Matsumoto O, et al. Emerging superconductivity hidden beneath charge-transfer insulators. Sci Rep, 2013, 3: 2235

    Article  ADS  Google Scholar 

  110. Krockenberger Y, Eleazer B, Irie H, et al. Superconducting- and insulating-ground states in La2CuO4 structural isomers. J Phys Soc Jpn, 2014, 83: 114602

    Article  ADS  Google Scholar 

  111. Brinkmann M, Rex T, Bach H, et al. Extended superconducting concentration range observed in Pr2-x CexCuO4-δ . Phys Rev Lett, 1995, 74: 4927–4930

    Article  ADS  Google Scholar 

  112. Brinkmann M, Bach H, Westerholt K. Electrical resistivity study of metallic Pr2-x CexCuO4+δ single crystals over a broad concentration and temperature range. Phys C, 1997, 292: 104–116

    Article  ADS  Google Scholar 

  113. Matsumoto O, Utsuki A, Tsukada A, et al. Superconductivity in undoped T′-RE2CuO4 with T c over 30 K. Phys C, 2008, 468: 1148–1151

    Article  ADS  Google Scholar 

  114. Jin K, Bach P, Zhang X H, et al. Anomalous enhancement of the superconducting transition temperature of electron-doped La2-x CexCuO4 and Pr2-x CexCuO4 cuprate heterostructures. Phys Rev B, 2011, 83: 060511

    Article  ADS  Google Scholar 

  115. Hoek M, Coneri F, Leusink D P, et al. Effect of high oxygen pressure annealing on superconducting Nd1.85Ce0.15CuO4 thin films by pulsed laser deposition from Cu-enriched targets. Supercond Sci Technol, 2014, 27: 044017

    Article  ADS  Google Scholar 

  116. Yuan J, Wu H, Cao L X, et al. Metallic oxide p-I-n junctions with ferroelectric as the barrier. Appl Phys Lett, 2007, 90: 102113

    Article  ADS  Google Scholar 

  117. Roberge G, Charpentier S, Godin-Proulx S, et al. Ramp-edge Josephson junctions made of Pr2-x CexCuOδ electrodes and barriers. J Appl Phys, 2011, 109: 073912

    Article  ADS  Google Scholar 

  118. Charpentier S, Roberge G, Godin-Proulx S, et al. Proximity effect in electron-doped cuprate Josephson junctions. Appl Phys Lett, 2011, 99: 032511

    Article  ADS  Google Scholar 

  119. Wang H B, Chen J, Tachiki T, et al. Intrinsic Josephson junctions in oxygen-deficient YBa2Cu3O7-δ film deposited on a substrate step. J Appl Phys, 1999, 85: 3740–3744

    Article  ADS  Google Scholar 

  120. Yuan J, Wang H B, Iguchi I, et al. Growth of electron-doped superconductor Pr0.9LaCe0.1CuO4 films and their applications to intrinsic Josephson iunctions. IEEE Trans Appl Supercond, 2009, 19: 3443–3446

    Article  ADS  Google Scholar 

  121. Hwang H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces. Nat Mater, 2012, 11: 103–113

    Article  ADS  Google Scholar 

  122. Briceno G, Chang H Y, Sun X D, et al. A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science, 1995, 270: 273–275

    Article  ADS  Google Scholar 

  123. Danielson E, Devenney M, Giaquinta D M, et al. A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods. Science, 1998, 279: 837–839

    Article  ADS  Google Scholar 

  124. Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001, 291: 854–856

    Article  ADS  Google Scholar 

  125. Wang J S, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library. Science, 1998, 279: 1712–1714

    Article  ADS  Google Scholar 

  126. Xiang X D, Sun X D, Briceno G, et al. A combinatorial approach to materials discovery. Science, 1995, 268: 1738–1740

    Article  ADS  Google Scholar 

  127. Jin K, Suchoski R, Fackler S, et al. Combinatorial search of superconductivity in Fe-B composition spreads. APL Mater, 2013, 1: 042101

    Article  ADS  Google Scholar 

  128. Carmeli I, Lewin A, Flekser E, et al. Tuning the critical temperature of cuprate superconductor films with self-assembled organic layers. Angew Chem-Int Edit, 2012, 51: 7162–7165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., He, G., Yang, H. et al. Research trends in electron-doped cuprate superconductors. Sci. China Phys. Mech. Astron. 58, 107401 (2015). https://doi.org/10.1007/s11433-015-5701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5701-8

Keywords

Navigation