Skip to main content
Log in

Structure, magnetic properties and magnetocaloric effects of Fe50Mn15−x Co x Ni35 alloys

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Fe50Mn15−x Co x Ni35 (x=0, 1, 3, 5, 7) alloys were prepared by arc melting under purified argon atmosphere. The ingots were homogenized at 930°C for 90 h followed by water quenching. The crystal structure, magnetic properties and magnetocaloric effects of the alloys were studied by X-ray diffraction (XRD) and MPMS-7-type SQUID. The results show that all samples still maintained a single γ-(Fe, Ni)-type phase structure. With the increase of the content of Co, the Curie temperatures of these alloys increased and exhibited a second-order magnetic transition from ferromagnetic (FM) to paramagnetic (PM) state near Curie temperature. The maximum magnetic entropy change and the relative cooling power of Fe50Mn10Co5Ni35 alloy was 2.55 J/kg·K and 181 J/kg, respectively, for an external field change of 5 T. Compared with rare earth metal Gd, Fe50Mn15−x Co x Ni35 series of alloys have obvious advantage in resource price; their Curie temperatures can be tuned to near room temperature, maintain a relatively large magnetic entropy change at the same time and they are a type of potential magnetic refrigeration materials near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franco V, Blázquez J S, Ingale B, et al. The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annu Rev Mater Res, 2012, 42: 305–342

    Article  ADS  Google Scholar 

  2. Min J X, Zhong X C, Zheng Z G, et al. Large magnetocaloric effect and application features of Gd99.75Fe0.25 alloy (in Chinese). Rare Met Mater Eng, 2013, 42(2): 362–365

    Google Scholar 

  3. Zhong X C, Tang P F, Gao B B, et al. Magnetic properties and magnetocaloric effects in amorphous and crystalline Gd55Co35Ni10 ribbons. Sci China-Phys Mech Astron, 2013, 56(6): 1096–1099

    Article  ADS  Google Scholar 

  4. Pecharsky V K, Gschneidner K A Jr. Giant Magnetocaloric effect in Gd5Si2Ge2. Phy Rev Lett, 1997, 78(23): 4494–4497

    Article  ADS  Google Scholar 

  5. Yüzüak E, Dincer I, Elerman Y. Giant magnetocaloric effect in the Gd5Ge2.025Si1.925In0.05 compound. Chin Phys B, 2010, 19(3): 037502

    Article  ADS  Google Scholar 

  6. Prabahar K, Kumar D M R, Raja M M, et al. Solidification behaviour and microstructural correlations in magnetocaloric Gd-Si-Ge-Nb alloys. Mater Sci Eng B, 2010, 172(3): 294–299

    Article  Google Scholar 

  7. Zhong X C, Min J X, Liu Z W, et al. Low hysteresis and large room temperature magnetocaloric effect of Gd5Si2.05−x Ge1.95−x Ni2x (2x =0.08, 0. 1) alloys. J Appl Phys, 2013, 113: 17A916

    Google Scholar 

  8. Hu F X, Shen B G, Sun J R, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett, 2001, 78: 3675–3677

    Article  ADS  Google Scholar 

  9. Bao B, Huang P, Fu B, et al. Enhancement of magnetocaloric effect in La0.8R0.2(Fe0.919Co0.081)11.7Al1.3 (R=Pr, Nd) compounds. J Magn Magn Mater, 2009, 321 (7): 786–789

    Article  ADS  Google Scholar 

  10. Lin Z P, Li S D, Liu M, et al. The magnetic entropy change in La0.8Ce0.2Fe11.4Si1.6Bx compounds prepared by copper-mold casting. J Magn Magn Mater, 2011, 323(13): 1741–1744

    Article  ADS  MathSciNet  Google Scholar 

  11. Dhahri J, Dhahri A, Oumezzine M, et al. Magnetocaloric properties of Cd-substituted perovskite-type manganese oxides. J Alloys Compd, 2009, 467(1–2): 44–47

    Article  Google Scholar 

  12. Oumezzine M, Zemni S, Peña O. Room temperature magnetic and magnetocaloric properties of La0.67Ba0.33Mn0.98Ti0.02O3 perovskite. J Alloys Compd, 2010, 508(2): 292–296

    Article  Google Scholar 

  13. Dudric R, Goga F, Neumann M, et al. Magnetic properties and magnetocaloric effect in La1.4−x CexCa1.6Mn2O7 perovskites synthesized by sol-gel method. J Mater Sci, 2012, 47(7): 3125–3130

    Article  ADS  Google Scholar 

  14. Tegus O, Brück E, Buschow K H J, et al. Transition-mental-based magnetic refrigerants for room temperature applications. Nature, 2002, 45: 150–152

    Article  ADS  Google Scholar 

  15. Cam T D T, Brück E, Tegus O, et al. Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe (P, Si, Ge). J Magn Magn Mater, 2007, 310: e1012–e1014

    Article  ADS  Google Scholar 

  16. Abu-Aljarayesh I, Said M R. Magnetic phase transition in (Fe, Mn)65Ni35 alloys, J Magn Magn Mater, 2001, 210: 73–80

    Article  ADS  Google Scholar 

  17. Said M R, Hamam Y A, Abu-Aljarayesh I. Magnetocaloric effects in Fe50Mn15Ni35. J Magn Magn Mater, 2004, 284: 161–164

    Article  ADS  Google Scholar 

  18. Ma L, Zhang H W, Yu S Y, et al. Magnetic-field-induced martensitic transformation in MnNiGa:Co alloys. Appl Phys Lett, 2008, 92: 032509

    Article  ADS  Google Scholar 

  19. Kainuma R, Ito W, Umetsu R Y, et al. Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys. Appl Phys Lett, 2008, 93: 091906

    Article  ADS  Google Scholar 

  20. Ettwig H H, Pepperhoff W. On magnetism of γ-Fe-Ni-Mn alloys. Phys Status Solidi A, 1974, 23(1): 105–111

    Article  ADS  Google Scholar 

  21. Morrish A H. The Physical Principles of Magnetism. New York: Wiley, 1965

    Google Scholar 

  22. Földeàki M, Chahine R, Bose T K. Magnetic measurements: A powerful tool in magnetic refrigerator design. J Appl Phys, 1995, 77: 3528–3537

    Article  ADS  Google Scholar 

  23. Kouvel J S, Fisher M E. Detailed magnetic behavior of nickel near its Curie Point. Phys Rev, 1964, 136: A1626–A1632

    Article  ADS  Google Scholar 

  24. Aharoni A. Introduction to the Theory of Ferromagnetism. New York: Oxford Science Publications, 2000. 57

    Google Scholar 

  25. Pecharsky V K, Gschneidner K A Jr. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K. Appl Phys Lett, 1997, 70(24): 3299–3302

    Article  ADS  Google Scholar 

  26. Smaili A, Chahine, R. Composite materials for Ericsson-like magnetic refrigeration cycle. J Appl Phys, 1997, 81(2): 824–829

    Article  ADS  Google Scholar 

  27. Gschneidner K A Jr, Pecharsky A O, Pecharsky V K, et al. Recent developments in magnetic refrigeration. Mater Sci Forum, 1999, 315: 69–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiChun Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, X., Tian, H., Tang, P. et al. Structure, magnetic properties and magnetocaloric effects of Fe50Mn15−x Co x Ni35 alloys. Sci. China Phys. Mech. Astron. 57, 437–441 (2014). https://doi.org/10.1007/s11433-013-5383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5383-z

Keywords

Navigation