Skip to main content
Log in

Detection of ordered wave in the networks of neurons with changeable connection

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The probability of long-range connection among neurons could be changeable in biological neuronal networks. In this paper, the probability of long-range connection between neurons is not fixed at a constant but varies in a numerical region (⩽ p 0), and then the collective behaviors of neurons are detected. A statistical factor in the two-dimensional space is used to detect the phase transition and robustness of spiral wave in the active network of neurons. It is found that the development of spatiotemporal pattern depends on the numerical region (⩽ p 0) for the probability of long-range connection. Coherence resonance-like behavior is observed due to the fluctuation in the long-range probability. Spiral waves emerge to occupy the network of neurons under an optimized probability of long-range connection, and it shows certain robustness in weak channel noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kwon O, Jo H H, Moon H T. Effect of spatially correlated noise on coherence resonance in a network of excitable cells. Phys Rev E, 2005, 72: 066121

    Article  ADS  Google Scholar 

  2. Bassett D, Bullmore E. Small-world brain networks. Neurosci, 2006, 12: 512–523

    Google Scholar 

  3. Park C H, Kim S Y, Kim Y H, et al. Comparison of the small-world topology between anatomical and functional connectivity in the human brain. Physica A, 2008, 387(23): 5958–5962

    Article  ADS  Google Scholar 

  4. Newman M E, Watts D J. Renormalization group analysis of the small-world network model. Phys Lett A, 1999, 263: 341–346

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Newman M E, Watts D J. Scaling and percolation in the small-world network model. Phys Rev E, 1999, 60: 7332–7342

    Article  ADS  Google Scholar 

  6. Yuan W J, Luo X S, Wang B H, et al. Excitation properties of the biological neurons with side-inhibition mechanism in small-world networks. Chin Phys Lett, 2006, 23(11): 3115–3118

    Article  ADS  Google Scholar 

  7. Yuan W J, Luo X S, Yang R H. Stochastic resonance in neural systems with small-world connections. Chin Phys Lett, 2007, 24(3): 835–838

    Article  ADS  Google Scholar 

  8. Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E, 2007, 76: 066203

    Article  ADS  Google Scholar 

  9. Perc M. Stochastic resonance on paced genetic regulatory small-world networks: Effects of asymmetric potentials. Eur Phys J B, 2009, 69: 147–153

    Article  ADS  MATH  Google Scholar 

  10. Wang M S, Hou Z H, Xin H W. Ordering spatiotemporal chaos in small-world neuron networks. ChemPhysChem, 2006, 7: 579–582

    Article  Google Scholar 

  11. Perc M. Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos Solitons Fractals, 2007, 31: 280–291

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Sun X J, Lei J Z, Perc M, et al. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks. Eur Phys J B, 2011, 79: 61–66

    Article  ADS  Google Scholar 

  13. Sun X J, Perc M, Lu Q S, et al. Spatial coherence resonance on diffusive and small-world networks of Hodgkin-Huxley neurons. Chaos, 2008, 18: 023102

    Article  MathSciNet  ADS  Google Scholar 

  14. Perc M. Spatial decoherence induced by small-world connectivity in excitable media. New J Phys, 2005, 7: 252

    Article  Google Scholar 

  15. Roxin A, Riecke H, Solla S A. Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett, 2004, 92: 198101

    Article  ADS  Google Scholar 

  16. Shanahan M. Dynamical complexity in small-world networks of spiking neurons. Phys Rev E, 2008, 78: 041924

    Article  MathSciNet  ADS  Google Scholar 

  17. Wang X F, Chen G R. Synchronization in small-world dynamical networks. Int J Bifurcat Chaos, 2002, 12: 187–192

    Article  Google Scholar 

  18. Wang Q Y, Lu Q S. Phase synchronization in small world chaotic neural networks. Chin Phys Lett, 2005, 22(6): 1329–1332

    Article  ADS  Google Scholar 

  19. Zheng Y H, Lu Q S. Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network. Physica A, 2008, 387: 3719–3728

    Article  ADS  Google Scholar 

  20. Wang Q Y, Duan Z S, Perc M, et al. Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability. EPL, 2008, 83: 50008

    Article  ADS  Google Scholar 

  21. Han F, Lu Q S, Wiercigroch M, et al. Complete and phase synchronization in a heterogeneous small-world neuronal network. Chin Phys B, 2009, 18(2): 0482–0488

    Article  ADS  Google Scholar 

  22. Wang Q Y, Perc M, Duan Z S, et al. Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A, 2010, 389: 3299–3306

    Article  ADS  Google Scholar 

  23. Percha B, Dzakpasu R, Żochowski M. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E, 2005, 72: 031909

    Article  ADS  Google Scholar 

  24. Cao Z J, Li P F, Zhang H, et al. Turbulence control with local pacing and its implication in cardiac defibrillation. Chaos, 2007, 17: 015107

    Article  MathSciNet  ADS  Google Scholar 

  25. Deng L Y, Zhang H, Li Y Q. Resonant drift of two-armed spirals by periodic advective field and periodic modulation of excitability. Phys Rev E, 2010, 81: 016204

    Article  ADS  Google Scholar 

  26. Zhan M, Zou W, Liu X. Taming turbulence in the complex Ginzburg-Landau equation. Phys Rev E, 2010, 81: 036211

    Article  ADS  Google Scholar 

  27. Luo J M, Zhang B S, Zhan M. Frozen state of spiral waves in excitable media. Chaos, 2009, 19: 033133

    Article  ADS  Google Scholar 

  28. Huang X Y, Troy W C, Yang Q C, et al. Spiral waves in disinhibited mammalian cortex. J Neurosci, 2004, 24: 9897

    Article  Google Scholar 

  29. Schiff S J, Huang X Y, Wu J Y. Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Phys Rev Lett, 2007, 98: 178102

    Article  ADS  Google Scholar 

  30. Wu J Y, Huang X Y, Zhang C. Propagating waves of activity in the neocortex: What they are, what they do. Neuroscientist, 2008, 14: 487

    Article  Google Scholar 

  31. Wang X N, Lu Y, Jiang M X, et al. Attraction of spiral waves by localized inhomogeneities with small-world connections in excitable media. Phys Rev E, 2004, 69: 056223

    Article  ADS  Google Scholar 

  32. He D H, Hu G, Zhan M, et al. Pattern formation of spiral waves in an inhomogeneous medium with small-world connections. Phys Rev E, 2002, 65: 055204

    Article  ADS  Google Scholar 

  33. Sinha S, Saramäki J, Kaski K. Emergence of self-sustained patterns in small-world excitable media. Phys Rev E, 2007, 76: 015101

    Article  ADS  Google Scholar 

  34. Qian Y, Huang X D, Hu G, et al. Structure and control of self-sustained target waves in excitable small-world networks. Phys Rev E, 2010, 81: 036101

    Article  ADS  Google Scholar 

  35. Ma J, Yang L J, Wu Y, et al. Spiral wave in the small-world networks of Hodgkin-Huxley neurons. Commun Theor Phys, 2010, 54: 583–588

    Article  ADS  Google Scholar 

  36. Ma J, Jia Y, Wang C N, et al. Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin-Huxley neurons. Appl Math Comput, 2010, 217: 3844–3852

    Article  MathSciNet  MATH  Google Scholar 

  37. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol-London, 1952, 117: 500–544

    Google Scholar 

  38. Liu F, Hu B B, Wang W. Effects of correlated and independent noise on signal processing in neuronal systems. Phys Rev E, 2001, 63: 031907

    Article  ADS  Google Scholar 

  39. Liu F, Yu Y G, Wang W. Signal-to-noise ratio gain in neuronal systems. Phys Rev E, 2001, 63: 051912

    Article  ADS  Google Scholar 

  40. Fox R F, Lu Y N. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E, 2004, 49: 3421

    Article  ADS  Google Scholar 

  41. Chow C C, White J A. Spontaneous action potentials due to channel fluctuations. Biophys J, 1996, 71: 3013–3021

    Article  Google Scholar 

  42. White J A, Rubinstein J T, Kay A R. Channel noise in neurons. Trends Neurosci, 1996, 23: 131–137

    Article  Google Scholar 

  43. Ma J, Huang L, Ying H P, et al. Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin-Huxley neuronal networks. Commun Nonlinear Sci Numer Simulat, 2012, 17: 4281–4293

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Ma J, Hou Z H, Xin H W. Control coherence resonance by noise recycling. Eur Phys J B, 2009, 69: 101–107

    Article  ADS  Google Scholar 

  45. Hou Z H, Xin H W. Noise-sustained spiral waves: Effect of spatial and temporal memory. Phys Rev Lett, 2002, 89: 280601

    Article  Google Scholar 

  46. Wang C N, Ma J, Tang J. Instability and Death of spiral wave in a two-dimensional array of Hindmarsh-Rose neurons. Commun Theor Phys, 2010, 53: 382–388

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Wu, Y., Wu, N. et al. Detection of ordered wave in the networks of neurons with changeable connection. Sci. China Phys. Mech. Astron. 56, 952–959 (2013). https://doi.org/10.1007/s11433-013-5070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5070-0

Keywords

Navigation