Skip to main content
Log in

Local Reynolds number and thresholds of transition in shear flows

  • Article
  • Special Topic: Fluid Mechanics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Recent experimental and numerical investigations reveal that the onset of turbulence in plane-Poiseuille flow and plane-Couette flow has some similar stages separated with different threshold Reynolds numbers. Based on these observations and the energy equation of a disturbed fluid element, a local Reynolds number Re L is derived to represent the maximum ratio of the energy supplement to the energy dissipation in a cross section. It is shown that along the sequence of transition stages, which include transient localized turbulence, “equilibrium” localized turbulence, spatially intermittent but temporally persistent turbulence and uniform turbulence, the corresponding thresholds of Re L for plane-Couette flow, Hagen-Poiseuille flow and plane-Poiseuille flow are consistent, indicating that the critical (threshold) states during the laminar-turbulent transition are determined by the local properties of the base flow and are independent of global features, such as flow geometries (pipe or channel) and types of driving forces (shear driving or pressure driving).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busse F H. The sequence-of-bifurcations approach towards understanding turbulent fluid flow. Surv Geophys, 2003, 24: 269–288

    Article  ADS  Google Scholar 

  2. Eckhardt B. A critical point for turbulence. Science, 2011, 333: 165–166

    Article  ADS  Google Scholar 

  3. Manneville P. Understanding the sub-critical transition to turbulence in wall flows. PRAMANA. J Phys, 2008, 70: 1009–1021

    Article  ADS  Google Scholar 

  4. Daviaud F, Hegseth J, Berg P. Subcritical transition to turbulence in plane Couette flow. Phys Rev Lett, 1992, 69: 2511–2516

    Article  ADS  Google Scholar 

  5. Tillmark N, Alfredsson P H. Experiments on transition in plane Couette flow. J Fluid Mech, 1992, 235: 89–102

    Article  ADS  Google Scholar 

  6. Dauchot O, Daviaud F. Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Phys Fluids, 1995, 7: 335–343

    Article  ADS  Google Scholar 

  7. Wygnanski I J, Champagne F H. On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J Fluid Mech, 1973, 59: 281–335

    Article  ADS  Google Scholar 

  8. Darbyshire A G, Mullin T. Transition to turbulence in constant-mass-flux pipe flow. J Fluid Mech, 1995, 289: 83–114

    Article  ADS  Google Scholar 

  9. Eckhardt B, Schneider T M, Hof B, et al. Turbulence transition in pipe flow. Annu Rev Fluid Mech, 2007, 39: 447–468

    Article  MathSciNet  ADS  Google Scholar 

  10. Wygnanski I J, Sokolov M, Friedman D. On transition in a pipe. Part 2. The equilibrium puff. J Fluid Mech, 1975, 69: 283–304

    Article  ADS  Google Scholar 

  11. Moxey D, Barkley D. Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc Natl Acad Sci USA, 2010, 107: 8091–8096

    Article  ADS  Google Scholar 

  12. Duguet Y, Schlatter P, Henningson D S. Formation of turbulent patterns near the onset of transition in plane Couette flow. J Fluid Mech, 2010, 650: 119–129

    Article  ADS  MATH  Google Scholar 

  13. Avila K, Moxey D, de Lozar A, et al. The onset of turbulence in pipe flow. Science, 2011, 333: 192–196

    Article  ADS  Google Scholar 

  14. Tuckerman L S, Barkley D. Patterns and dynamics in transitional plane Couette flow. Phys Fluids, 2011, 23: 041301

    Article  ADS  Google Scholar 

  15. Eckhardt B. Turbulence transition in pipe flow: Some open questions. Nonlinearity, 2008, 21: T1–T11

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Manneville P, Prigent A, Dauchot O. Banded turbulence in Taylor-Couette and plane Couette flow. APS/DFD meeting. Bull Am Phys Soc, 2001, 46: 35

    Google Scholar 

  17. Prigent A, Grégoire G, Chaté H, et al. Large-scale finite-wavelength modulation within turbulent shear flows. Phys Rev Lett, 2002, 89: 014501

    Article  ADS  Google Scholar 

  18. Prigent A, Grégoire G, Chaté H, et al. Long-wavelength modulation of turbulent shear flows. Phys D, 2003, 174: 100–113

    Article  MATH  Google Scholar 

  19. Manneville P. Spots and turbulent domains in a model of transitional plane Couette flow. Theor Comput Fluid Dyn, 2004, 18: 169–181

    Article  MATH  Google Scholar 

  20. Barkley D, Tuckerman L S. Mean flow of turbulent-laminar patterns in plane Couette flow. J Fluid Mech, 2007, 576: 109–137

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Gill A E. A mechanism for instability of plane Couette flow and of Poiseuille flow in a pipe. J Fluid Mech, 1965, 21: 503–511

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Gavarini M I, Bottaro A, Nieuwstadt F T M. The initial stage of transition in pipe flow: Role of optimal base-flow distortions. J Fluid Mech, 2004, 517: 131–165

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Ben-Dov G, Cohen J. Critical Reynolds number for a natural transition to turbulence in pipe flows. Phys Rev Lett, 2007, 98: 064503

    Article  ADS  Google Scholar 

  24. Tao J. Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces. Phys Rev Lett, 2009, 103: 264502

    Article  ADS  Google Scholar 

  25. Ryan N W, Johnson M. Transition from laminar to turbulent flow in pipes. AICHE J, 1959, 5: 433–435

    Article  Google Scholar 

  26. Hanks R W. The laminar-turbulent transition for flow in pipe, concentric annuli, and parallel plates. AICHE J, 1963, 9: 45–48

    Article  Google Scholar 

  27. Fur B Le, Martin M. Laminar and transitional flow of drilling muds and various suspensions in circular tubes. J Fluid Mech, 1967, 30: 449–463

    Article  ADS  Google Scholar 

  28. Nouar C, Frigaard I A. Nonlinear stability of Poiseuille flow of a Bingham fluid: Theoretical results and comparison with phenomenological criteria. J Non-Newtonian Fluid Mech, 2001, 100: 127–149

    Article  MATH  Google Scholar 

  29. Peixinho J, Nouar C, Desaubry C, et al. Laminar transition and turbulent flow of yield stress fluid in a pipe. J Non-Newtonian Fluid Mech, 2005, 128: 172–184

    Article  Google Scholar 

  30. Leutheusser H J, Chu V H. Experiments on plane Couette flow. J Hyd Div Am Sot Civ Eng, 1971, 97: 1269–1284

    Google Scholar 

  31. Bottin S, Dauchot O, Daviaud F. Intermittency in a locally forced plane Couette flow. Phys Rev Lett, 1997, 79: 4377–4380

    Article  ADS  Google Scholar 

  32. Barkley D, Tuckerman L S. Computational study of turbulent laminar patterns in Couette flow. Phys Rev Lett, 2005, 94: 014502

    Article  ADS  Google Scholar 

  33. Eckhardt B, Faisst H, Schmiegel A, et al. Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil Trans R Soc A, 2008, 366: 1297–1315

    Article  MathSciNet  ADS  Google Scholar 

  34. Tuckerman L S, Barkley D, Moxey O, et al. Order parameter in laminar-turbulent patterns. In: Eckhardt B, ed. Advances in Turbulence XII. NY: Springer, 2009. 132: 89–91

    Chapter  Google Scholar 

  35. Hof B, van Doorne C W H, Westerweel J, et al. Turbulence regeneration in pipe flow at moderate Reynolds numbers. Phys Rev Lett, 2005, 95: 214502

    Article  ADS  Google Scholar 

  36. Peixinho J, Mullin T. Finite-amplitude thresholds for transition in pipe flow. J Fluid Mech, 2007, 582: 169–178

    Article  ADS  MATH  Google Scholar 

  37. Willis A P, Kerswell R R. Critical behavior in the relaminarization of localized turbulence in pipe flow. Phys Rev Lett, 2007, 98: 014501

    Article  ADS  Google Scholar 

  38. Faisst H, Eckhardt B. Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J Fluid Mech, 2004, 504: 343–352

    Article  ADS  MATH  Google Scholar 

  39. Hof B, Westerweel J, Schneider T M, et al. Finite lifetime of turbulence in shear flows. Nature, 2006, 443: 59–62

    Article  ADS  Google Scholar 

  40. Peixinho J, Mullin T. Decay of turbulence in pipe flow. Phys Rev Lett, 2006, 96: 094501

    Article  ADS  Google Scholar 

  41. Avila M, Willis A P, Hof B. On the transient nature of localized pipe flow turbulence. J Fluid Mech, 2010, 646: 127–136

    Article  ADS  MATH  Google Scholar 

  42. Hof B, de Lozar A, Kuik D J, et al. Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys Rev Lett, 2008, 101: 214501

    Article  ADS  Google Scholar 

  43. Nishi M, Ünsal B, Durst F, et al. Laminar-to-turbulent transition of pipe flows through puffs and slugs. J Fluid Mech, 2008, 614: 425–446

    Article  ADS  MATH  Google Scholar 

  44. Patel V C, Head M R. Some observations on skin friction and velocity profiles in fully developed pipe and channel flows. J Fluid Mech, 1969, 38: 181–201

    Article  ADS  Google Scholar 

  45. Carlson D R, Widnall S E, Peeters M F. A flow-visualization study of transition in plane Poiseuille flow. J Fluid Mech, 1982, 121: 487–505

    Article  ADS  Google Scholar 

  46. Alavyoon F, Henningson D S, Alfredsson P H. Turbulent spots in plane Poiseuille flow-flow visualization. Phys Fluids, 1986, 29: 1328–1331

    Article  ADS  Google Scholar 

  47. Tsukahara T, Kawaguchi Y, Kawamura H, et al. Turbulence stripe in transitional channel flow with/without system rotation. IUTAM Book Ser, 2010, 18: 421–426

    Article  Google Scholar 

  48. Mullin T. Experimental studies of transition to turbulence in a pipe. Annu Rev Fluid Mech, 2011, 43: 1–24

    Article  MathSciNet  ADS  Google Scholar 

  49. Kuik D J, Poelma C, Westerweel J. Quantitative measurement of the lifetime of localized turbulence in pipe flow. J Fluid Mech, 2010, 645: 529–539

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianJun Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, J., Chen, S. & Su, W. Local Reynolds number and thresholds of transition in shear flows. Sci. China Phys. Mech. Astron. 56, 263–269 (2013). https://doi.org/10.1007/s11433-012-4955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4955-7

Keywords

Navigation