Skip to main content
Log in

Geometries for possible kinematics

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The physical and geometrical realizations of algebras for all possible Lorentzian and Euclidean kinematics with so(3) isotropy are presented in contraction approach and then re-classified. All geometries associated with these realizations are also obtained by the contraction method. Further relations among the geometries are revealed. Most geometries fall into pairs. There exists t ⇔ 1/(ν2 t) correspondence in each pair. In the viewpoint of differential geometry, there are only 9 geometries, which have right signature and geometrical spatial isotropy. They are 3 relativistic geometries, 3 absolute-time geometries, and 3 absolute-space geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inönü E, Wigner E P. On the contraction of groups and their representations. Proc Natl Acad Sci USA, 1953, 39: 510–524; Gilmore R. Lie Group, Lie Algebras, and Some of Their Applications. New York: J Wiley, 1974

    Article  ADS  MATH  Google Scholar 

  2. Bacry H, Lévy-Leblond J M. Possible kinematics. J Math Phys, 1968, 9: 1605–1614

    Article  ADS  MATH  Google Scholar 

  3. Yaglom I M. A Simple Non-Euclidean Geometry and Its Physical Basis. Berlin: Springer Verlag, 1979

    MATH  Google Scholar 

  4. Sanjuan M A F. Group contraction and the nine Cayley-Klein geometries. Int Journ Theor Phys, 1984, 23:1–14

    Article  MATH  Google Scholar 

  5. Guo H Y, Huang C G, Wu H T, et al. The principle of relativity, kinematics and algebraic relations. Sci China-Phys Mech Astron, 2010, 53:591–597

    Article  ADS  Google Scholar 

  6. Guo H Y, Wu H T, Zhou B. The principle of relativity and the special relativity triple. Phys Lett B, 2009, 670:437–441

    Article  MathSciNet  ADS  Google Scholar 

  7. Guo H Y, Huang C G, Xu Z, et al. On Beltrami model of de Sitter spacetime. Mod Phys Lett A, 2004, 19: 1701–1710; Guo H Y, Huang C G, Xu Z, et al. On special relativity with cosmological constant. Phys Lett A, 2004, 331: 1–7; Guo H Y, Huang C G, Xu Z, et al. Three kinds of special relativity via inverse Wick rotation. Chin Phys Lett, 2005, 22: 2477–2480; Guo H Y, Huang C G, Zhou B. Temperature at horizon in de Sitter spacetime. Europhys Lett, 2005, 72: 1045–1051

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Umow N A. Einheitliche abeleitung der transformationen, dir mitdem relativitätsprinzip verträglich sind. Phys Z, 1910, 11: 905–915; Wl H. Mathemathische Analyse des Raumproblems. Berlin: Springer, 1923; Fock V. The Theory of Space-Time and Gravitation. New York: Pergamon Press, 1959, and references therein; Hua L G. Starting with the Unit Circle. New York: Springer, 1982

    MATH  Google Scholar 

  9. Guo H Y, Huang C G, Tian Y, et al. Snyder’s model—de Sitter special relativity duality and de Sitter gravity. Class Quant Grav, 2007, 24:4009–4035

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Huang C G, Guo H Y, Tian Y, et al. Newton-Hooke limit of Beltrami-de Sitter spacetime, prinicple of Galilei-Hooke’s relativity and postulate on Newton-Hooke universal time. Int J Mod Phys A, 2007, 22: 2535–2562; Tian Y, Guo H Y, Huang C G, et al. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time. Phys Rev D, 2005, 71: 044030

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Derome J G, Dubois J G. Hooke’s symmetries and nonrelativistie cosmological kinematies. I. Nuo Cim, 1972, 9: 351–376; Aldrovandi R, Barbosa A L, Crispino L C B, et al. Non-relativistic spacetimes with cosmological constant. Class Quant Grav, 1999, 16: 495–506; Gao Y H. Symmetries, matrices, and de Sitter gravity. arXiv:hep-th/0107067; Gibbons G W, Patricot C E. Newton-Hooke spacetimes, Hpp-waves and the cosmological constant. Class Quant Grav, 2003, 20: 5225–5239

    Article  MathSciNet  Google Scholar 

  12. Gibbons G, Hashimotob K, Yi P. Tachyon condensates, Carrollian contraction of Lorentz group, and fundamental strings. J High Energy Phys, 2002, 0209:061

    Article  ADS  Google Scholar 

  13. Huang C G. Principle of relativity, 24 possible kinematical algebras and new geometries with Poincaré symmetry. In: Luo J, Zhou Z B, Yeh H C, et al., eds. Proceedings of the 9th Asia-Pacific International Conference. Singapore: World Scientific Publishing, 2010. 118–129; Huang C G, Tian Y, Wu X N, et al. New geometry with all Killing vectors spanning the Poincaré algebra. Chin Phys Lett, 2012, 29: 040303; Huang C G, Tian Y, Wu X N, et al. Geometries with the second Poncaré symmetry. Commun Theor Phys, 2012, 57: 553–562

    Google Scholar 

  14. Aldrovandi R, Pereira J G. A second Poincaré group. arXiv:gr-qc/9809061

  15. Guo H Y. Transformation group and invarinats on typical space-times. Bull Sci, 1977, 22:487–490

    Google Scholar 

  16. Gibbons G W, Warnick C M. Dark energy and projective symmetry. arXiv:1003.3845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoGuang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Tian, Y., Wu, X. et al. Geometries for possible kinematics. Sci. China Phys. Mech. Astron. 55, 1978–2003 (2012). https://doi.org/10.1007/s11433-012-4788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4788-4

Keywords

Navigation