Skip to main content
Log in

Studies on the properties of surface and edges of N-layer graphenes

  • Review
  • Special Topic: Nanomaterials
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Graphene, a new two-dimensional carbon material, is a rising star of physics, chemistry and materials science. In this work, we report the recent experimental researches on the Raman spectra and the temperature-dependent features of graphenes and carbon nanoscrolls, which are evolved from graphene and have an open tubular structure. The layer-dependent Raman enhancing characteristics of n-layer graphenes for crystal violet, and the thickness-dependent morphologies of gold on n-layer graphenes are also systematically investigated. Meanwhile, the aggregations of ferromagnetic and paramagnetic atoms at edges of graphenes and graphite are observed and the mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183–191

    Article  ADS  Google Scholar 

  2. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  ADS  Google Scholar 

  3. Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. PNAS, 2005, 102(30): 10451–10453

    Article  ADS  Google Scholar 

  4. Marianetti C A, Yevick H G. Failure Mechanisms of Graphene under Tension. Phys Rev Lett, 2010, 105(24): 245502

    Article  ADS  Google Scholar 

  5. Bunch J S, van der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets. Science, 2007, 315(5811): 490–493

    Article  ADS  Google Scholar 

  6. Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8(3): 902–907

    Article  ADS  Google Scholar 

  7. Heersche H B, Jarillo-Herrero P, Oostinga J B, et al. Bipolar supercurrent in graphene. Nature, 2007, 446(7131): 56–59

    Article  ADS  Google Scholar 

  8. Liang X, Fu Z, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett, 2007, 7(12): 3840–3844

    Article  ADS  Google Scholar 

  9. Alwarappan S, Erdem A, Liu C, et al. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C, 2009, 113(20): 8853–8857

    Article  Google Scholar 

  10. Sakhaee-Pour A, Ahmadian M T, Vafai A. Potential application of single-layered graphene sheet as strain sensor. Solid State Commun, 2008, 147(7–8): 336–340

    Article  ADS  Google Scholar 

  11. Ang P K, Chen W, Wee A T S, et al. Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc, 2008, 130(44): 14392–14393

    Article  Google Scholar 

  12. Fowler J D, Allen M J, Tung V C, et al. Practical chemical sensors from chemically derived grapheme. ACS Nano, 2009, 3(2): 301–306

    Article  Google Scholar 

  13. Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710

    Article  ADS  Google Scholar 

  14. Patil A J, Vickery J L, Scott T B, et al. Aqueous stabilization and self-assembly of graphene sheets into layered Bio-nanocomposites using DNA. Adv Mater, 2009, 21(31): 3159–3164

    Article  Google Scholar 

  15. Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B, 1996, 54(24): 17954–17961

    Article  ADS  Google Scholar 

  16. Yan Q M, Huang B, Yu J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett, 2007, 7(6): 1469–1473

    Article  ADS  Google Scholar 

  17. Cervantes-Sodi F, Csanyi G, Piscanec S, et al. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Physl Rev B, 2008, 77(16): 165427

    Article  ADS  Google Scholar 

  18. Qiu C Y, Zhou H Q, Chen M J, et al. Conformation transition of single-layer graphene and its raman spectroscopy. J Nanosci Nanotech, 2010, 10(11): 7481–7484

    Article  Google Scholar 

  19. Zhou H Q, Qiu C Y, Yang H C, et al. Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls. Chem Phys Lett, 2011, 501(4–6): 475–479

    Article  ADS  Google Scholar 

  20. Zhou H Q, Qiu C Y, Liu Z, et al. Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc, 2010, 132(3): 944–946

    Article  Google Scholar 

  21. Zhou H Q, Yang H C, Qiu C Y, et al. Aggregation of ferromagnetic and paramagnetic atoms at edges of graphenes and graphite. Chin Phys B, 2011, 20(2): 026803

    Article  ADS  Google Scholar 

  22. Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 97(18): 187401

    Article  ADS  Google Scholar 

  23. Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene. Phys Rep-Rev Sect Phys Lett, 2009, 473(5–6): 51–87

    Google Scholar 

  24. Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges. Nano Lett, 2009, 9(4): 1433–1441

    Article  ADS  Google Scholar 

  25. Casiraghi C, Pisana S, Novoselov K S, et al. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 2007, 91(23): 233108

    Article  ADS  Google Scholar 

  26. Basko D M, Piscanec S, Ferrari A C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys Rev B, 2009, 80(16): 165413

    Article  ADS  Google Scholar 

  27. Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B, 2000, 61(20): 14095–14107

    Article  ADS  Google Scholar 

  28. Sabio J, Seoanez C, Fratini S, et al. Electrostatic interactions between graphene layers and their environment. Phys Rev B, 2008, 77(19): 195409

    Article  ADS  Google Scholar 

  29. Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotech, 2008, 3(8): 491–495

    Article  ADS  Google Scholar 

  30. Lee E J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices. Nat Nanotech, 2008, 3(8): 486–490

    Article  ADS  Google Scholar 

  31. Danneau R, Wu F, Craciun M F, et al. Shot noise in ballistic graphene. Phys Rev Lett, 2008, 100(19): 196802

    Article  ADS  Google Scholar 

  32. Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6(9): 652–655

    Article  ADS  Google Scholar 

  33. Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotech, 2008, 3(4): 210–215

    Article  Google Scholar 

  34. Pisana S, Lazzeri M, Casiraghi C, et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater, 2007, 6(3): 198–201

    Article  ADS  Google Scholar 

  35. Abdula D, Ozel T, Kang K, et al. Environment-induced effects on the temperature dependence of raman spectra of single-layer graphene. J Phys Chem C, 2008, 112(51): 20131–20134

    Article  Google Scholar 

  36. Coluci V R, Braga S F, Baughman R H, et al. Prediction of the hydrogen storage capacity of carbon nanoscrolls. Phys Rev B, 2007, 75(12): 125404

    Article  ADS  Google Scholar 

  37. Braga S F, Coluci V R, Legoas S B, et al. Structure and dynamics of carbon nanoscrolls. Nano Lett, 2004, 4(5): 881–884

    Article  ADS  Google Scholar 

  38. Ci L J, Zhou Z P, Song L, et al. Temperature dependence of resonant Raman scattering in double-wall carbon nanotubes. Appl Phys Lett, 2003, 82(18): 3098–3100

    Article  ADS  Google Scholar 

  39. Moskovits M. Surface-enhanced Raman spectroscopy: A brief retrospective. J Raman Spectroscopy, 2005, 36(6–7): 485–496

    Article  ADS  Google Scholar 

  40. Lombardi J R, Birke R L, Lu T H, et al. Charge-transfer theory of surface enhanced Raman-spectroscopy—Herzberg-Teller contributions. J Chem Phys, 1986, 84(8): 4174–4180

    Article  ADS  Google Scholar 

  41. Osawa M, Matsuda N, Yoshii K, et al. Charge-transfer resonance Raman process in surface-enhanced Raman-scattering from P-aminothiophenol adsorbed on silver — Herzberg-Teller contribution. J Phys Chem, 1994, 98(48): 12702–12707

    Article  Google Scholar 

  42. Fromm D P, Sundaramurthy A, Kinkhabwala A, et al. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys, 2006, 124(6): 061101

    Article  ADS  Google Scholar 

  43. Ling X, Xie L, Fang Y, et al. Can graphene be used as a substrate for Raman enhancement? Nano Lett, 2009, 10(2): 553–561

    Article  ADS  Google Scholar 

  44. Jiang J W, Tang H, Wang B S, et al. Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene. Phys Rev B, 2008, 77(23): 235421

    Article  ADS  Google Scholar 

  45. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Article  ADS  Google Scholar 

  46. Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Hall effect and Berry’s phase of 2 pi in bilayer graphene. Nat Phys, 2006, 2(3): 177–180

    Article  Google Scholar 

  47. Morozov S V, Novoselov K S, Katsnelson M I, et al. Strong suppression of weak localization in graphene. Phys Rev Lett, 2006, 97(1): 016801

    Article  ADS  Google Scholar 

  48. Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater, 2009, 8(3): 235–242

    Article  ADS  Google Scholar 

  49. Han K H, Spemann D, Esquinazi P, et al. Ferromagnetic spots in graphite produced by proton irradiation. Adv Mater, 2003, 15(20): 1719–1722

    Article  Google Scholar 

  50. Ohldag H, Tyliszczak T, Hohne R, et al. pi-Electron ferromagnetism in metal-free carbon probed by soft x-ray dichroism. Phys Rev Lett, 2007, 98(18): 187204

    Article  ADS  Google Scholar 

  51. Cervenka J, Katsnelson M I, Flipse C F J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat Phys, 2009, 5(11): 840–844

    Article  Google Scholar 

  52. Esquinazi P, Spemann D, Hohne R, et al. Induced magnetic ordering by proton irradiation in graphite. Phys Rev Lett, 2003, 91(22): 227201

    Article  ADS  Google Scholar 

  53. Coey J M D, Venkatesan M, Fitzgerald C B, et al. Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite. Nature, 2002, 420(6912): 156–159

    Article  ADS  Google Scholar 

  54. Wang Y, Huang Y, Song Y, et al. Room-temperature ferromagnetism of graphene. Nano Lett, 2009, 9(1): 220–224

    Article  ADS  Google Scholar 

  55. Makarova T L, Sundqvist B, Hohne R, et al. Retraction: Magnetic carbon. Nature, 2006, 440(7084): 707–707

    Article  ADS  Google Scholar 

  56. Zhang Z H, Chen C F, Guo W L. Magnetoelectric effect in graphene nanoribbons on substrates via electric bias control of exchange splitting. Phys Rev Lett, 2009, 103(18): 187204

    Article  ADS  Google Scholar 

  57. Bhowmick S, Shenoy V B. Edge state magnetism of single layer graphene nanostructures. J Chem Phys, 2008, 128(24): 244717

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LianFeng Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Zhou, H., Qiu, C. et al. Studies on the properties of surface and edges of N-layer graphenes. Sci. China Phys. Mech. Astron. 54, 1729 (2011). https://doi.org/10.1007/s11433-011-4483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4483-x

Keywords

Navigation