Skip to main content
Log in

Realization of allowable qeneralized quantum gates

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The most general duality gates were introduced by Long, Liu and Wang and named allowable generalized quantum gates (AGQGs, for short). By definition, an allowable generalized quantum gate has the form of \( \mathcal{U} \) = ∑ d−1k=0 c k U k , where U k ’s are unitary operators on a Hilbert space H and the coefficients c k ’s are complex numbers with |∑ d−1k=0 c k | ⩽ 1 and |c k | ⩽ 1 for all k = 0, 1, ..., d − 1. In this paper, we prove that an AGQG \( \mathcal{U} \) = ∑ d−1k=0 c k U k is realizable, i.e. there are two d by d unitary matrices W and V such that c k = W 0k V k0 (0 ⩽ kd − 1) if and only if ∑ d−1k=0 |c k | ⩽ 1, in that case, the matrices W and V are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long G L. The general quantum interference principle and the duality computer. Commun Theoret Phys, 2006, 45: 825–844

    Article  Google Scholar 

  2. Gudder S. Duality quantum computers and quamtun operations. Int J Theor Phys, 2008, 47: 268–279

    Article  MATH  MathSciNet  Google Scholar 

  3. Du H K, Wang Y Q, Xu J L. Applications of the generalized Luders theorem. J Math Phys, 2008, 49: 013507

    Article  MathSciNet  ADS  Google Scholar 

  4. Gudder S. Mathematical theory of duality quantum computers. Quantum Inf Process, 2007, 6: 37–48

    Article  MATH  MathSciNet  Google Scholar 

  5. Long G L, Liu Y. Duality quantum computing. Front Comput Sci China, 2008, 2: 167–178

    Article  MathSciNet  Google Scholar 

  6. Wang Y Q, Du H K, Dou Y N. Note on generalized quantum gates and quantum operations. Int J Theor Phys, 2008, 47: 2268–2278

    Article  MATH  MathSciNet  Google Scholar 

  7. Long G L, Liu Y, Wang C. Allowable generalized quantum gates. Commun Theor Phys, 2009, 51: 65–67

    Article  MATH  Google Scholar 

  8. He Y G, Sun J G. Complete quantum circuit of Haar wavelet based MRA. Chin Sci Bull, 2005, 50: 1796–1798

    Article  Google Scholar 

  9. Fang X M, Zhu X W, Feng M, et al. Realization of quantum discrete Fourier transform with NMR. Chin Sci Bull, 2000, 45: 1071–1075

    Article  MATH  Google Scholar 

  10. Liu D D, Di Y M. ℂM ⊗ ℂN D-computable state. Sci China Ser G-Phys Mech Astron, 2008, 51: 1300–1307

    Article  MATH  ADS  Google Scholar 

  11. Ye M Y, Zhang Y S, Guo G C. Quantum entanglement and quantum operation. Sci China Ser G-Phys Mech Astron, 2008, 51: 14–21

    Article  MATH  ADS  Google Scholar 

  12. Cao H X, Li L, Chen Z L, et al. Restricted allowable generalized quantum gates. Chin Sci Bull, 2010, 55: 2122–2125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiXin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Cao, H. & Li, L. Realization of allowable qeneralized quantum gates. Sci. China Phys. Mech. Astron. 53, 1878–1883 (2010). https://doi.org/10.1007/s11433-010-4078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4078-y

Keywords

Navigation