Skip to main content
Log in

Gamma-ray bursts in the Swift-Fermi era: Confronting data with theory

  • Reviews
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

With the prompt slewing capability of the X-ray and UV-optical telescopes onboard the Swift mission and with the gamma-ray large area telescope onboard the Fermi mission, gamma-ray bursts (GRBs) are now accessible in a full time window and in all electromagnetic wavelengths for the events. Many observational breakthroughs have been made in recent years. I present here a brief review of some observational breakthroughs with the two missions, focusing on how these breakthroughs have revolutionized our understanding of the nature of this phenomenon and puzzles as well as challenges of confronting the conventional models with data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gehrels N, Chincarini G, Giommi P, et al. The Swift gamma-ray burst mission. Astrophys J, 2004, 611: 1005–1020

    Article  ADS  Google Scholar 

  2. Band D L, Axelsson M, Baldini L, et al. Prospects for GRB Science with the Fermi Large Area Telescope. Astrophys J, 2009, 701: 1673–1694

    Article  ADS  Google Scholar 

  3. Meszaros P. Gamma-ray bursts. Rep Prog Phys, 2006, 69: 2259–2321

    Article  ADS  Google Scholar 

  4. Woosley S E, Bloom J S. The Supernova gamma-ray burst connection. Ann Rev Astron Astrophys, 2006, 44: 507–556

    Article  ADS  Google Scholar 

  5. Zhang B. Gamma-ray bursts in the Swift era. Chin J Astron Astrophys, 2007, 7: 1–50

    Article  ADS  Google Scholar 

  6. Nakar E. Short-hard gamma-ray bursts. Phys Rep, 2007, 442: 166–236

    Article  ADS  Google Scholar 

  7. Burrows D N, Romano P, Falcone A, et al. Bright X-ray flares in gamma-ray burst afterglows. Science, 2005, 309: 1833–1835

    Article  ADS  Google Scholar 

  8. Zhang B, Fan Y Z, Dyks J, et al. Physical processes shaping gamma-ray burst X-ray afterglow light curves: Theoretical implications from the Swift X-ray telescope observations. Astrophys J, 2006, 642: 354–370

    Article  ADS  Google Scholar 

  9. Nousek J A, Kouveliotou C, Grupe D, et al. Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data. Astrophys J, 2006, 642: 389–400

    Article  ADS  Google Scholar 

  10. Tagliaferri G, Goad M, Chincarini G, et al. An unexpectedly rapid decline in the X-ray afterglow emission of long gamma-ray bursts. Nature, 2005, 436: 985–988

    Article  ADS  Google Scholar 

  11. Zhang B B, Liang E W, Zhang B. A comprehensive analysis of Swift XRT data. I. Apparent spectral evolution of gamma-ray burst X-ray tails. Astrophys J, 2007, 666: 1002–1011

    Article  ADS  Google Scholar 

  12. Butler N R, Kocevski D. X-ray hardness variations as an internal/external shock diagnostic. Astrophys J, 2007, 668: 400–408

    Article  ADS  Google Scholar 

  13. O’Brien P T, Willingale R, Osborne J, et al. The early X-ray emission from GRBs. Astrophys J, 2006, 647: 1213–1237

    Article  ADS  Google Scholar 

  14. Liang E W, Lv H J, Zhang B B, et al. A comprehensive analysis of Swift/XRT Data: IV. Single power-law decaying XRT lightcurves and implications for the unified origin of the X-rays. Astrophys J, 2009, 707: 328–342

    Article  ADS  Google Scholar 

  15. Fenimore E E, Madras C D, Nayakshin S. Expanding relativistic shells and gamma-ray burst temporal structure. Astrophys J, 1996, 473: 998–1012

    Article  ADS  Google Scholar 

  16. Kumar P, Panaitescu A. Afterglow emission from naked gamma-ray bursts. Astrophys J, 2000, 541: L51–L54

    Article  ADS  Google Scholar 

  17. Liang E W, Zhang B, O’Brien P T, et al. Testing the curvature effect and internal origin of gamma-ray burst prompt emissions and X-ray flares with Swift data. Astrophys J, 2006, 646: 351–357

    Article  ADS  Google Scholar 

  18. Zhang B B, Zhang B, Liang E W, et al. Curvature effect of a non-power-law spectrum and spectral evolution of GRB X-ray tails. Astrophys J, 2009, 690: L10–L13

    Article  MathSciNet  ADS  Google Scholar 

  19. Qin Y P. The softening phenomenon due to the curvature effect: In the case of an extremely short intrinsic emission. Astrophys J, 2009, 691: 811–822

    Article  ADS  Google Scholar 

  20. Pe’er A, Meszaros P, Rees M J. Radiation from an expanding cocoon as an explanation of the steep decay observed in GRB early afterglow light curves. Astrophys J, 2006, 652: 482–489

    Article  ADS  Google Scholar 

  21. Shao L, Dai Z G. Behavior of X-ray dust scattering and implications for X-ray afterglows of gamma-ray bursts. Astrophys J, 2007, 660: 1319–1325

    Article  ADS  Google Scholar 

  22. Giannios D, Spitkovsky A. Signatures of a thermal component in shock-accelerated electrons in GRBs. Mon Not Roy Astron Soc, 2009, 400: 330–336

    Article  ADS  Google Scholar 

  23. Liang E W, Zhang B B, Zhang B. A comprehensive analysis of Swift XRT data. II. Diverse physical origins of the shallow decay segment. Astrophys J, 2007, 670: 565–583

    Article  ADS  Google Scholar 

  24. Dai Z G, Lu T. Gamma-ray bursts and afterglows from rotating strange stars and neutron stars. Phys Rev Lett, 1998, 81: 4301–4304

    Article  ADS  Google Scholar 

  25. Zhang B, Meszaros P. Gamma-ray burst afterglow with continuous energy injection: Signature of a highly magnetized millisecond pulsar. Astrophys J, 2001, 552: L35–L38

    Article  ADS  Google Scholar 

  26. Granot J, Kumar P. Distribution of gamma-ray burst ejecta energy with Lorentz factor. Mon Not Roy Astron Soc, 2006, 366: L13–L16

    Article  ADS  Google Scholar 

  27. Willingale R, O’Brien P T, Osborne J P, et al. Testing the standard fireball model of gamma-ray bursts using late X-ray afterglows measured by Swift. Astrophys J, 2007, 662: 1093–1110

    Article  ADS  Google Scholar 

  28. Troja E, Cusumano G, O’Brien P T, et al. Swift observations of GRB 070110: An extraordinary X-ray afterglow powered by the central engine. Astrophys J, 2007, 665: 599–607

    Article  ADS  Google Scholar 

  29. Panaitescu A, Meszaros P, Burrows D, et al. Evidence for chromatic X-ray light-curve breaks in Swift gamma-ray burst afterglows and their theoretical implications. Mon Not Roy Astron Soc, 2006, 369: 2059–2064

    Article  ADS  Google Scholar 

  30. Fan Y, Piran T. Gamma-ray burst efficiency and possible physical processes shaping the early afterglow. Mon Not Roy Astron Soc, 2006, 369: 197–206

    Article  ADS  Google Scholar 

  31. Burrows D N, Racusin J. Swift X-ray afterglows: Where are the X-ray jet breaks? Nuovo Cimento B Serie, 2006, 121: 1273–1287

    ADS  Google Scholar 

  32. Dai X, Halpern J P, Morgan N D, et al. Optical and X-ray observations of GRB 060526: A complex afterglow consistent with an achromatic jet break. Astrophys J, 2007, 658: 509–513

    Article  ADS  Google Scholar 

  33. Liang E W, Racusin J L, Zhang B, et al. A Comprehensive analysis of Swift XRT data. III. Jet break candidates in X-ray and optical afterglow light curves. Astrophys J, 2008, 675: 528–552

    Article  ADS  Google Scholar 

  34. Dai X, Garnavich P M, Prieto J L, et al. Finding optical jet breaks for Swift-era GRBs with the LBT. Astrophys J, 2008, 682: L77–L80

    Article  ADS  Google Scholar 

  35. Racusin J L, Liang E W, Burrows D N, et al. Jet breaks and energetics of Swift gamma-ray burst X-ray afterglows. Astrophys J, 2009, 698: 43–74

    Article  ADS  Google Scholar 

  36. Dai Z G, Lu T. The afterglow of GRB 990123 and a dense medium. Astrophys J, 1999, 519: L155–L158

    Article  ADS  Google Scholar 

  37. Wei D M, Lu T. Can the jet steepen the light curves of gamma-ray burst afterglows? Astrophys J, 2000, 541: 203–206

    Article  ADS  Google Scholar 

  38. Wei D M, Lu T. Can all breaks in gamma-ray burst afterglows be explained by jet effects? Mon Not Roy Astron Soc, 2002, 332: 994–998

    Article  ADS  Google Scholar 

  39. Wei D M, Lu T. Are some breaks in GRB afterglows caused by their spectra? Astron Astrophys, 2002, 381: 731–735

    Article  ADS  Google Scholar 

  40. Sari R, Piran T. Predictions for the very early afterglow and the optical flash. Astrophys J, 1999, 520: 641–649

    Article  ADS  Google Scholar 

  41. Molinari E, Vergani S D, Malesani D, et al. REM observations of GRB 060418 and GRB 060607A: The onset of the afterglow and the initial fireball Lorentz factor determination. Astron Astrophys, 2007, 469: L13–L16

    Article  ADS  Google Scholar 

  42. Yamazaki R. Prior emission model for X-ray plateau phase of gamma-ray burst afterglows. Astrophys J, 2009, 690: L118–L121

    Article  ADS  Google Scholar 

  43. Chincarini G, Moretti A, Romano P, et al. The first survey of X-ray flares from gamma-ray bursts observed by Swift: Temporal properties and morphology. Astrophys J, 2007, 671: 1903–1920

    Article  ADS  Google Scholar 

  44. Falcone A D, Morris D, Racusin J, et al. The first survey of X-ray flares from gamma-ray bursts observed by Swift: Spectral properties and energetics. Astrophys J, 2007, 671: 1921–1938

    Article  ADS  Google Scholar 

  45. Kocevski D, Butler N, Bloom J S. Pulse width evolution of late-time X-ray flares in gamma-ray bursts. Astrophys J, 2007, 667: 1024–1032

    Article  ADS  Google Scholar 

  46. Ioka K, Kobayashi S, Zhang B. Variabilities of gamma-ray burst afterglows: Long-acting engine, anisotropic jet, or many fluctuating regions? Astrophys J, 2005, 631: 429–434

    Article  ADS  Google Scholar 

  47. Nakar E, Piran T. Modeling fluctuations in gamma-ray burst afterglow light curves. Astrophys J, 2003, 598: 400–410

    Article  ADS  Google Scholar 

  48. Fan Y Z, Wei D M. Late internal-shock model for bright X-ray flares in gamma-ray burst afterglows and GRB 011121. Mon Not Roy Astron Soc, 2005, 364: L42–L46

    ADS  Google Scholar 

  49. King A, O’Brien P T, Goad M R, et al. Gamma-ray bursts: Restarting the engine. Astrophys J, 2005, 630: L113–L115

    Article  ADS  Google Scholar 

  50. Dai Z G, Wang X Y, Wu X F, et al. X-ray flares from postmerger millisecond pulsars. Science, 2006, 311: 1127–1129

    Article  ADS  Google Scholar 

  51. Perna R, Armitage P J, Zhang B. Flares in long and short gamma-ray bursts: A common origin in a hyperaccreting accretion disk. Astrophys J, 2006, 636: L29–L32

    Article  ADS  Google Scholar 

  52. Proga D, Zhang B. The late time evolution of gamma-ray bursts: Ending hyperaccretion and producing flares. Mon Not Roy Astron Soc, 2006, 370: L61–L65

    Article  ADS  Google Scholar 

  53. Lei W H, Wang D X, Zou Y C, et al. Hyperaccretion after the Blandford-Znajek process: A new model for GRBs with X-ray flares observed in early afterglows. Chin J Astron Astrophys, 2008, 8: 404–410

    Article  ADS  Google Scholar 

  54. Liu T, Gu W M, Xue L, et al. Constraints on the mass accretion rate of neutrino-cooled disks in gamma-ray bursts. Astrophys J, 2008, 676: 545–548

    Article  ADS  Google Scholar 

  55. Xu R, Liang E. X-ray flares of gamma-ray bursts: Quakes of solid quark stars? Sci China Ser G-Phys Mech Astron, 2009, 52: 315–320

    Article  ADS  Google Scholar 

  56. Colgate S A. Early gamma rays from supernovae. Astrophys J, 1974, 187: 333–336

    Article  ADS  Google Scholar 

  57. Woosley S E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys J, 1993, 405: 273–277

    Article  ADS  Google Scholar 

  58. Fruchter A S, Levan A J, Strolger L, et al. Long gamma-ray bursts and core-collapse supernovae have different environments. Nature, 2006, 441: 463–468

    Article  ADS  Google Scholar 

  59. Paczynski B. Gamma-ray bursters at cosmological distances. Astrophys J, 1986, 308: L43–L46

    Article  ADS  Google Scholar 

  60. Eichler D, Livio M, Piran T, et al. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature, 1989, 340: 126–128

    Article  ADS  Google Scholar 

  61. Narayan R, Paczynski B, Piran T. Gamma-ray bursts as the death throes of massive binary stars. Astrophys J, 1992, 395: L83–L86

    Article  ADS  Google Scholar 

  62. Zhang B, Zhang B B, Virgili F J, et al. Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: The cases of z=6.7 GRB 080913, z=8.2 GRB 090423, and some short/hard GRBs. Astrophy J, 2009, 703: 1696–1724

    Article  ADS  Google Scholar 

  63. Zhang B, Zhang B B, Liang E W, et al. Making a short gamma-ray burst from a long one: Implications for the nature of GRB 060614. Astrophys J, 2007, 655: L25–L28

    Article  ADS  Google Scholar 

  64. Perley D A, Metzger B D, Granot J, et al. GRB 080503: Implications of a naked short gamma-ray burst dominated by extended emission. Astrophys J, 2009, 696: 1871–1885

    Article  ADS  Google Scholar 

  65. Gal-Yam A, Fox D B, Price P A, et al. A novel explosive process is required for the gamma-ray burst GRB 060614. Nature, 2006, 444: 1053–1055

    Article  ADS  Google Scholar 

  66. Fynbo J P U, Watson D, Thöne C C, et al. No supernovae associated with two long-duration gamma-ray bursts. Nature, 2006, 444: 1047–1049

    Article  ADS  Google Scholar 

  67. Della Valle M, Chincarini G, Panagia N, et al. An enigmatic long-lasting gamma-ray burst not accompanied by a bright supernova. Nature, 2006, 444: 1050–1052

    Article  ADS  Google Scholar 

  68. Xu D, Starling R L C, Fynbo J P U, et al. In search of progenitors for supernovaless gamma-ray bursts 060505 and 060614: Re-examination of their afterglows. Astrophys J, 2009, 696: 971–979

    Article  ADS  Google Scholar 

  69. Lu Y, Huang Y F, Zhang S N. A tidal disruption model for the gamma-ray burst of GRB 060614. Astrophys J, 2008, 684: 1330–1335

    Article  ADS  Google Scholar 

  70. Rosswog S. Fallback accretion in the aftermath of a compact binary merger. Mon Not Roy Astron Soc, 2007, 376: L48–L51

    Article  ADS  Google Scholar 

  71. Metzger B D, Quataert E, Thompson T A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon Not Roy Astron Soc, 2008, 385: 1455–1460

    Article  ADS  Google Scholar 

  72. Gao W H, Fan Y Z. Short-living Supermassive magnetar model for the early x-ray flares following short GRBs. Chin J Astron Astrophys, 2006, 6: 513–516

    Article  ADS  Google Scholar 

  73. Kouveliotou C, Meegan C A, Fishman G J, et al. Identification of two classes of gamma-ray bursts. Astrophys J, 1993, 413: L101–L104

    Article  ADS  Google Scholar 

  74. Bloom J S, Butler N R, Perley D A. Gamma-ray bursts, classified physically. Am Inst Phys Conf Ser, 2008: 11–15

  75. Zhang B. Astrophysics: A burst of new ideas. Nature, 2006, 444: 1010–1011

    Article  ADS  Google Scholar 

  76. Yi T, Liang E, Qin Y, et al. On the spectral lags of the short gamma-ray bursts. Mon Not Roy Astron Soc, 2006, 367: 1751–1756

    Article  ADS  Google Scholar 

  77. Gehrels N, Norris J P, Barthelmy S D, et al. A new gamma-ray burst classification scheme from GRB060614. Nature, 2006, 444: 1044–1046

    Article  ADS  Google Scholar 

  78. Greiner J, Krühler T, Fynbo J P U, et al. GRB 080913 at Redshift 6.7. Astrophys J, 2009, 693: 1610–1620

    Article  ADS  Google Scholar 

  79. Lin L, Liang E W, Zhang S N. GRB 090423: Marking the death of a massive star at z=8.2. 2009, preprint (arXiv0906.3057)

  80. Racusin J L, Karpov S V, Sokolowski M, et al. Broadband observations of the naked-eye gamma-ray burst GRB080319B. Nature, 2008, 455: 183–188

    Article  ADS  Google Scholar 

  81. Groot P J, Galama T J, van Paradijs J, et al. A search for optical afterglow from GRB 970828. Astrophys J, 1998, 493: L27–L30

    Article  ADS  Google Scholar 

  82. Roming P W A, Schady P, Fox D B, et al. Very early optical afterglows of gamma-ray bursts: Evidence for relative paucity of detection. Astrophys J, 2006, 652: 1416–1422

    Article  ADS  Google Scholar 

  83. De Pasquale M, Piro L, Perna R, et al. A comparative study of the x-ray afterglow properties of optically bright and dark gamma-ray bursts. Astrophys J, 2003, 592: 1018–1024

    Article  ADS  Google Scholar 

  84. Lin Y Q. The early x-ray afterglows of optically bright and dark gamma-ray bursts. Chin J Astron Astrophys, 2006, 6: 555–560

    Article  ADS  Google Scholar 

  85. Jakobsson P, Hjorth J, Fynbo J P U, et al. Swift identification of dark gamma-ray bursts. Astrophys J, 2004, 617: L21–L24

    Article  ADS  Google Scholar 

  86. Rol E, Wijers R, Kouveliotou C, et al. How special are dark gamma-ray bursts: A diagnostic tool. Astrophys J, 2005, 624: 868–879

    Article  ADS  Google Scholar 

  87. Liang E, Zhang B. Identification of two categories of optically bright gamma-ray bursts. Astrophys J, 2006, 638: L67–L70

    Article  ADS  Google Scholar 

  88. van der Horst A J, Kouveliotou C, Gehrels N, et al. Optical classification of gamma-ray bursts in the Swift era. Astrophys J, 2009, 699: 1087–1091

    Article  ADS  Google Scholar 

  89. Chen H W, Perley D A, Pollack L K, et al. High-redshift starbursting dwarf galaxies revealed by gamma-ray burst afterglows. Astrophys J, 2009, 691: 152–174

    Article  ADS  Google Scholar 

  90. Elíasdóttir Á, Fynbo J, Hjorth J, et al. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy: The 2175 a feature at z = 2.45. Astrophys J, 2009, 697: 1725–1740

    Article  ADS  Google Scholar 

  91. Prochaska J X, Sheffer Y, Perley D A, et al. The first positive detection of molecular gas in a GRB host galaxy. Astrophys J, 2009, 691: L27–L32

    Article  ADS  Google Scholar 

  92. Galama T J, Vreeswijk P M, van Paradijs J, et al. An unusual supernova in the error box of the gamma-ray burst of 25 April 1998. Nature, 1998, 395: 670–672

    Article  ADS  Google Scholar 

  93. Campana S, Mangano V, Blustin A J, et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature, 2006, 442: 1008–1010

    Article  ADS  Google Scholar 

  94. Liang E W, Zhang B, Virgili F, et al. Low-luminosity gamma-ray bursts as a unique population: Luminosity function, local rate, and beaming factor. Astrophys J, 2007, 662: 1111–1118

    Article  ADS  Google Scholar 

  95. Soderberg A M, Kulkarni S R, Berger E, et al. The sub-energetic gamma-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425. Nature, 2004, 430: 648–650

    Article  ADS  Google Scholar 

  96. Soderberg A M, Berger E, Page K L, et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature, 2008, 453: 469–474

    Article  ADS  Google Scholar 

  97. Li L X. The X-ray transient 080109 in NGC 2770: An X-ray flash associated with a normal core-collapse supernova. Mon Not Roy Astron Soc, 2008, 388: 603–610

    Article  ADS  Google Scholar 

  98. Mazzali P A, Valenti S, Della Valle M, et al. The metamorphosis of supernova SN 2008D/XRF 080109: A link between supernovae and GRBs/hypernovae. Science, 2008, 321: 1185

    Article  ADS  Google Scholar 

  99. Xu D, Watson D, Fynbo J, et al. Mildly relativistic X-ray transient 080109 and SN 2008D: Towards a continuum from energetic GRB/XRF to ordinary Ibc SN. In: 37th COSPAR Scientific Assembly: n/a 1, 2008. 3512

  100. Guetta D, Perna R, Stella L, et al. Are all gamma-ray bursts like GRB 980425, GRB 030329, and GRB 031203? Astrophys J, 2004, 615: L73–L76

    Article  ADS  Google Scholar 

  101. Imerito A, Coward D, Burman R, et al. Probing the low-luminosity gamma-ray burst population with new generation satellite detectors. Mon Not Roy Astron Soc, 2008, 391: 405–410

    Article  ADS  Google Scholar 

  102. Dai X. Intensity distribution and luminosity function of the Swift gamma-ray bursts. Astrophys J, 2009, 697: L68–L71

    Article  ADS  Google Scholar 

  103. Kistler M D, Yüksel H, Beacom J F, et al. An unexpectedly Swift rise in the gamma-ray burst rate. Astrophys J, 2008, 673: L119–L122

    Article  ADS  Google Scholar 

  104. Chapman R, Tanvir N R, Priddey R S, et al. How common are long gamma-ray bursts in the local Universe? Mon Not Roy Astron Soc, 2007, 382: L21–L25

    Article  ADS  Google Scholar 

  105. Virgili F J, Liang E W, Zhang B. Low-luminosity gamma-ray bursts as a distinct GRB population: A firmer case from multiple criteria constraints. Mon Not Roy Astron Soc, 2009, 392: 91–103

    Article  ADS  Google Scholar 

  106. Lamb D Q, Reichart D E. Gamma-ray bursts as a probe of the very high redshift universe. Astrophys J, 2000, 536: 1–18

    Article  ADS  Google Scholar 

  107. Bromm V, Loeb A. The expected redshift distribution of gamma-ray bursts. Astrophys J, 2002, 575: 111–116

    Article  ADS  Google Scholar 

  108. Gou L J, Fox D B, Meszaros P. Modeling GRB 050904: Autopsy of a massive stellar explosion at z=6.29. Astrophys J, 2007, 668: 1083–1102

    Article  ADS  Google Scholar 

  109. Kistler M D, Yuksel H, Beacom J F, et al. The star formation rate in the reionization era as indicated by gamma-ray bursts. Astrophys J, 2009, 705: L104–L108

    Article  ADS  Google Scholar 

  110. Tanvir N R, Fox D B, Levan A J, et al. A γ-ray burst of a redshift of z∼8.2. Nature, 2009, 461: 1254–1257

    Article  ADS  Google Scholar 

  111. Akerlof C W, Swan H F. An estimation of the gamma-ray burst afterglow apparent optical brightness distribution function. Astrophys J, 2007, 671: 1868–1876

    Article  ADS  Google Scholar 

  112. Chincarini G, Fiore F, Della Valle M, et al. Gamma-ray bursts: Learning about the birth of black holes and opening new frontiers for cosmology. The Messenger, 2006, 123: 54

    ADS  Google Scholar 

  113. Dai Z G, Liang E W, Xu D. Constraining ΩM and dark energy with gamma-ray bursts. Astrophys J, 2004, 612: L101–L104

    Article  ADS  Google Scholar 

  114. Ghirlanda G, Ghisellini G, Lazzati D, et al. Gamma-ray bursts: New rulers to measure the universe. Astrophys J, 2004, 613: L13–L16

    Article  ADS  Google Scholar 

  115. Friedman A S, Bloom J S. Toward a more standardized candle using gamma-ray burst energetics and spectra. Astrophys J, 2005, 627: 1–25

    Article  ADS  Google Scholar 

  116. Liang E, Zhang B. Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications. Astrophys J, 2005, 633: 611–623

    Article  ADS  Google Scholar 

  117. Ghirlanda G, Ghisellini G, Lazzati D. The collimation-corrected gamma-ray burst energies correlate with the peak energy of their vfv spectrum. Astrophys J, 2004, 616: 331–338

    Article  ADS  Google Scholar 

  118. Ghirlanda G, Ghisellini G, Firmani C, et al. Cosmological constraints with GRBs: Homogeneous medium vs. wind density profile. Astron Astrophys, 2006, 452: 839–844

    Article  ADS  Google Scholar 

  119. Liang E, Zhang B. Calibration of gamma-ray burst luminosity indicators. Mon Not Roy Astron Soc, 2006, 369: L37–L41

    Article  ADS  Google Scholar 

  120. Liang N, Xiao W K, Liu Y, et al. A cosmology-independent calibration of gamma-ray burst luminosity relations and the hubble diagram. Astrophys J, 2008, 685: 354–360

    Article  ADS  Google Scholar 

  121. Li L X. Star formation history up to z = 7.4: Implications for gamma-ray bursts and cosmic metallicity evolution. Mon Not Roy Astron Soc, 2008, 388: 1487–1500

    Article  ADS  Google Scholar 

  122. Savaglio S. GRBs as cosmological probes—cosmic chemical evolution. New J Phys, 2006, 8: 195

    Article  Google Scholar 

  123. Chen S L, Li A, Wei D M. Dust extinction of gamma-ray burst host galaxies: Identification of two classes? Astrophys J, 2006, 647: L13–L16

    Article  ADS  Google Scholar 

  124. Li A, Liang S L, Kann D A, et al. On dust extinction of gamma-ray burst host galaxies. Astrophys J, 2008, 685: 1046–1051

    Article  ADS  Google Scholar 

  125. Li Y, Li A, Wei D M. Determining the dust extinction of gamma-ray burst host galaxies: A direct method based on optical and x-ray photometry. Astrophys J, 2008, 678: 1136–1141

    Article  ADS  Google Scholar 

  126. Chen H W. Probing the circumstellar medium of GRB afterglows through absorption-line observations. Roy Soc London Philosoph Trans Ser A, 2007, 365: 1247–1253

    Article  ADS  Google Scholar 

  127. Prochaska J X, Chen H W, Dessauges-Zavadsky M, et al. Probing the interstellar medium near star-forming regions with gamma-ray burst afterglow spectroscopy: Gas, metals, and dust. Astrophys J, 2007, 666: 267–280

    Article  ADS  Google Scholar 

  128. Totani T, Kawai N, Kosugi G, et al. Implications for cosmic reionization from the optical afterglow spectrum of the gamma-ray burst 050904 at z = 6.3. Pub Astron Soc Jpn, 2006, 58: 485–498

    ADS  Google Scholar 

  129. Vreeswijk P M, Ellison S L, Ledoux C, et al. The host of GRB 030323 at z=3.372: A very high column density DLA system with a low metallicity. Astron Astrophys, 2004, 419: 927–940

    Article  ADS  Google Scholar 

  130. Jakobsson P, Hjorth J, Fynbo J P U, et al. The line-of-sight towards GRB 030429 at z =2.66: Probing the matter at stellar, galactic and intergalactic scales. Astron Astrophys, 2004, 427: 785–794

    Article  ADS  Google Scholar 

  131. Prochter G E, Prochaska J X, Chen H W, et al. On the incidence of strong Mg II absorbers along gamma-ray burst sight lines. Astrophys J, 2006, 648: L93–L96

    Article  ADS  Google Scholar 

  132. Fynbo J P U, Starling R L C, Ledoux C, et al. Probing cosmic chemical evolution with gamma-ray bursts: GRB 060206 at z = 4.048. Astron Astrophys, 2006, 451: L47–L50

    Article  ADS  Google Scholar 

  133. Schneid E J, Bertsch D L, Fichtel C E, et al. EGRET detection of high energy gamma rays from the gamma-ray burst of 3 May 1991. Astron Astrophys, 1992, 255: L13–L16

    ADS  Google Scholar 

  134. Sommer M, Bertsch D L, Dingus B L, et al. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst. Astrophys J, 1994, 422: L63–L66

    Article  ADS  Google Scholar 

  135. Hurley K, Dingus B L, Mukherjee R, et al. Detection of a gamma-ray burst of very long duration and very high energy. Nature, 1994, 372: 652–654

    Article  ADS  Google Scholar 

  136. Schneid E J, Bertsch D L, Dingus B L, et al. EGRET measurements of energetic gamma rays from the gamma-ray bursts of 1992 June 22 and 1994 March 1. Astrophys J, 1995, 453: 95

    Article  ADS  Google Scholar 

  137. González M M, Dingus B L, Kaneko Y, et al. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model. Nature, 2003, 424: 749–751

    Article  ADS  Google Scholar 

  138. Abdo A A, Ackermann M, Arimoto M, et al. Fermi observations of high-energy gamma-ray emission from GRB 080916C. Science, 2009, 323: 1688

    Article  ADS  Google Scholar 

  139. Dingus B L. Observations of the highest energy gamma rays from gamma-ray bursts. In: Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission: April 1, 2003. 240–243

  140. Giuliani A, Mereghetti S, Fornari F, et al. AGILE detection of delayed gamma-ray emission from GRB 080514B. Astron Astrophys, 2008, 491: L25–L28

    Article  ADS  Google Scholar 

  141. Dermer C D, Atoyan A. Neutral beam model for the anomalous gamma-ray emission component in GRB 941017. Astron Astrophys, 2004, 418: L5–L8

    Article  ADS  Google Scholar 

  142. Meszaros P, Rees M J. Delayed GeV Emission from cosmological gamma-ray bursts — Impact of a relativistic wind on external matter. Mon Not Roy Astron Soc, 1994, 269: L41–L45

    ADS  Google Scholar 

  143. Zhang B, Meszaros P. High-energy spectral components in gamma-ray burst afterglows. Astrophys J, 2001, 559: 110–122

    Article  ADS  Google Scholar 

  144. Wang X Y, Dai Z G, Lu T. Prompt high-energy gamma-ray emission from the synchrotron self-compton process in the reverse shocks of gamma-ray bursts. Astrophys J, 2001, 546: L33–L37

    Article  MathSciNet  ADS  Google Scholar 

  145. Fan Y, Piran T. Sub-GeV flashes in gamma-ray burst afterglows as probes of underlying bright far-ultraviolet flares. Mon Not Roy Astron Soc, 2006, 370: L24–L28

    Article  ADS  Google Scholar 

  146. Wang X Y, Meszaros P. GeV photons from the upscattering of supernova shock breakout X-rays by an outside gamma-ray burst jet. Astrophys J, 2006, 643: L95–L98

    Article  ADS  Google Scholar 

  147. Galli A, Guetta D. Gamma-ray burst high energy emission from internal shocks. Astron Astrophys, 2008, 480: 5–13

    Article  ADS  Google Scholar 

  148. Chen L, Liu D B, Huang Y F, et al. Does the prompt gamma-ray emission of gamma-ray bursts arise from resonant inverse compton scattering? Astrophys J, 2008, 680: 539–544

    Article  ADS  Google Scholar 

  149. Wang X Y, Li Z, Dai Z G, et al. GRB 080916C: On the radiation origin of the prompt emission from keV/MeV To GeV. Astrophys J, 2009, 698: L98–L102

    Article  ADS  Google Scholar 

  150. Toma K, Wu X F, Meszaros P. An up-scattered cocoon emission model of gamma-ray burst high-energy lags. 2009, preprint (arXiv0905.1697)

  151. Li Z. Prompt GeV emission from residual collisions in GRB Outflows: Evidence from fermi observations of GRB 080916c, vol. 0810, 2008

  152. Li Z, Waxman E. Prompt optical emission from residual collisions in gamma-ray burst outflows. Astrophys J, 2008, 674: L65–L68

    Article  ADS  Google Scholar 

  153. Dai Z G, Lu T. Spectrum and duration of delayed MeV-GeV emission of gamma-ray bursts in cosmic background radiation fields. Astrophys J, 2002, 580: 1013–1016

    Article  ADS  Google Scholar 

  154. Razzaque S, Meszaros P, Zhang B. GeV and higher energy photon interactions in gamma-ray burst fireballs and surroundings. Astrophys J, 2004, 613: 1072–1078

    Article  ADS  Google Scholar 

  155. Murase K, Zhang B, Takahashi K, et al. Possible effects of pair echoes on gamma-ray burst afterglow emission. Mon Not Roy Astron Soc, 2009, 339: 1825–1832

    Article  ADS  Google Scholar 

  156. Cheng L X, Cheng K S. Delayed MeV-GeV gamma-ray photons in gamma-ray bursts: An effect of electromagnetic cascades of very high energy gamma-rays in the infrared/microwave background. Astrophys J, 1996, 459: L79

    Article  ADS  Google Scholar 

  157. Plaga R. Detecting intergalactic magnetic fields using time delays in pulses of gamma-rays. Nature, 1995, 374: 430–432

    Article  ADS  Google Scholar 

  158. Baring M G, Harding A K. The Escape of high-energy photons from gamma-ray bursts. Astrophys J, 1997, 491: 663

    Article  ADS  Google Scholar 

  159. Baring M G. Temporal evolution of pair attenuation signatures in gamma-ray burst spectra. Astrophys J, 2006, 650: 1004–1019

    Article  ADS  Google Scholar 

  160. Gupta N, Zhang B. Diagnosing the site of gamma-ray burst prompt emission with spectral cut-off energy. Mon Not Roy Astron Soc, 2008, 384: L11–L15

    Article  ADS  Google Scholar 

  161. Wang X Y, Li Z, Meszaros P. GeV-TeV and X-ray flares from gamma-ray bursts. Astrophys J, 2006, 641: L89–L92

    Article  ADS  Google Scholar 

  162. Fan Y Z. Interpretation and implication of the non-detection of GeV spectrum excess by Fermi gamma-ray space telescope in most GRBs. Mon Not Roy Astron Soc, 2009, 397: 1539–1548

    Article  ADS  Google Scholar 

  163. Zhang B, Pe’er A. Evidence of a non-baryonic composition in GRB 080916C. Astrophys J, 2009, 700: L65–L68

    Article  ADS  Google Scholar 

  164. McGlynn S, Foley S, McBreen B, et al. High energy emission and polarisation limits for the INTEGRAL burst GRB 061122. Astron Astrophys, 2009, 499: 465–472

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EnWei Liang.

Additional information

This work was supported by the National Basic Research Program of China (Grant No. 2009CB824800), the National Natural Science Foundation of China (Grant No. 10873002), Guangxi SHI-BAI-QIAN Project (Grant No. 2007201), the Program for 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions, and the Research Foundation of Guangxi University (Grant No. M30520).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, E. Gamma-ray bursts in the Swift-Fermi era: Confronting data with theory. Sci. China Phys. Mech. Astron. 53 (Suppl 1), 14–23 (2010). https://doi.org/10.1007/s11433-010-0023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0023-3

Keywords

Navigation