Skip to main content
Log in

Kinetic Monte Carlo simulation of film morphologies at the initial stages

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The morphologies at the initial stages of thin film growth were studied by using Kinetic Monte Carlo techniques. A more efficient model was used to calculate the activity energy. The model involves incident atom attachment, diffusion, detachment from the surface, detached atom returning, and dimer diffusion. We edited a set of software of the model and simulated the surface morphologies by the principle of computer graphics. It is shown that the nucleuses formed at the initial stages and the surface morphologies at high temperatures are very different from those at low temperatures. The later surface growth depends on the nucleuses at the initial stages. The mechanism results from the atom thermal movement, the temperature determines the diffusion ability, and the deposition rate determines the diffusion time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizuseki H, Jin Y, Kawazoe Y, et al. Cluster growth process by direct simulation Monte Carlo method. Appl Phys A-Mat Sci Process, 2001, 73: 731–735

    Article  ADS  Google Scholar 

  2. Henelius P, Frobrich P, Kuntz P J, et al. Quantum Monte Carlo simulation of thin magnetic films. Phys Rev B, 2002, 66: 094407-1-8

    Google Scholar 

  3. Fichthorn K A, Merrick M L, Scheffler M. A Kinetic Monte Carlo investigation of island nucleation and growth in thin-film epitaxy in the presence of substrate-mediated interactions. Appl Phys A-Mat Sci Proc, 2002, 75: 17–23

    Article  ADS  Google Scholar 

  4. Joshua M P, Joachim J, Colin C H, et al. Kinetic Monte Carlo-molecular dynamics of hyperthermal copper deposition on Cu(111). Phys Rev B, 2002, 66: 235412-1–8

    Google Scholar 

  5. Yatskou M M, Donker H, Koehorst R B M. A study of energy transfer processes in zinc-porphyrin films using Monte Carlo simulation of fluorescence decay. Chem Phys Lett, 2001, 345: 141–150

    Article  Google Scholar 

  6. Mae K. Molecular dynamics aided Kinetic Monte Carlo simulations of thin film growth of Ag on Mo(110) with structural evolution. Surf Sci, 2001, 482–485: 860–865

    Article  Google Scholar 

  7. Adams J B, Wang Z Y, Li Y. Modeling Cu thin film growth. Thin Solid Films, 2000, 365: 201–210

    Article  Google Scholar 

  8. Gilmer G H, Huang H C, Christopher R. Thin film deposition: Fundamentals and modeling. Comp Mat Sci, 1998, 12: 354–380

    Article  Google Scholar 

  9. Battailr C C, Srolovitz D J. A Kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: Application to diamond. J Appl Phys, 1996, 82: 6293–6300

    Article  ADS  Google Scholar 

  10. Wang L G, Clancy P. Kinetic Monte Carlo simulation of the growth of polycrystalline Cu film. Surf Sci, 2001, 473: 25–38

    Article  Google Scholar 

  11. Bruschi P, Cagnoni P, Nannini A. Temperature-dependent Monte Carlo simulation of thin metal film growth and percolation. Phys Rev B, 1997, 55: 7955–7963

    Article  ADS  Google Scholar 

  12. Landau D P, Pal S, Shim S Y. Monte Carlo simulations of film growth. Comp Phys Comm, 1999, 121–122: 341–346

    Article  Google Scholar 

  13. Numinen L, Kuroen A, Kaski K. Kinetic Monte Carlo simulation of nucleation on patterned substrates. Phys Rev B, 2000, 63: 035407-1-7

    Google Scholar 

  14. Bruschi P, Nannini A, Pitto M. Three-dimensional Monte Carlo simulations of electron-migration in polycrystalline thin films. Comp Mater Sci, 2000, 17: 299–304

    Article  Google Scholar 

  15. Bruschi P, Nannini A, Pieri F. Monte Carlo simulation of polycrystalline thin film deposition. Phys Rev B, 2000, 63: 0345406-1-8

    Google Scholar 

  16. Pomeroy M, Joachim J, Colin C, et al. Kinetic Monte Carlo molecular dynamics investigations of hyper-thermal copper deposition on Cu(111). Phys Rev B, 2002, 66: 235412-1–8

    Article  ADS  Google Scholar 

  17. Wadley H N G, Zhou X, Johnson R A, et al. Mechanisms, models and methods of vapor deposition. Prog Mater Sci, 2001, 46: 329–377

    Article  Google Scholar 

  18. Zhang P F, Zheng X P, He D Y, Monte Carlo simulation of film growth. Sci China Ser G-Phys Mech Astron, 2003, 46(6): 610–618

    MATH  Google Scholar 

  19. Zhang P F, Zheng X P, He D Y. Kinetic Monte Carlo simulation of Cu thin film growth. Vaccum, 2004, 72: 405–410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang PeiFeng.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10574059), the Natural Science Foundation of Gansu Province (Grant No. 3ZSO42-B25-033), the Postdoctoral Foundation of Lanzhou University and Qinglan Talent Engineering Funds of Lanzhou Jiaotong University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Zhang, P., He, D. et al. Kinetic Monte Carlo simulation of film morphologies at the initial stages. Sci. China Ser. G-Phys. Mech. Astron. 51, 56–63 (2008). https://doi.org/10.1007/s11433-007-0011-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-007-0011-4

Keywords

Navigation