Skip to main content
Log in

Continuous variable quantum teleportation and remote state preparation between two space-separated local networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Implementing quantum communication between space-separated local networks is essential for designing global quantum networks. In this study, we propose quantum teleportation and remote state preparation schemes between users of two space-separated local networks established by continuous-variable multipartite entangled states. In the proposed schemes, the quantum nodes belonging to the two distant local networks are first entangled by entanglement swapping, and then quantum communication protocols are realized. We show that quantum teleportation between any two users belonging to space-separated local networks can be realized with the assistance of other users, and squeezed thermal states can be remotely prepared in one local network by performing a homodyne projective measurement on the state in another distant local network. Our results provide a feasible approach for quantum communication between space-separated quantum networks with multipartite entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kimble H J. The quantum internet. Nature, 2008, 453: 1023–1030

    Article  Google Scholar 

  2. Wehner S, Elkouss D, Hanson R. Quantum internet: a vision for the road ahead. Science, 2018, 362: 303

    Article  MathSciNet  Google Scholar 

  3. Wei S H, Jing B, Zhang X Y, et al. Towards real-world quantum networks: a review. Laser Photon Rev, 2022, 16: 2100219

    Article  Google Scholar 

  4. Xu F, Ma X, Zhang Q, et al. Secure quantum key distribution with realistic devices. Rev Mod Phys, 2020, 92: 025002

    Article  MathSciNet  Google Scholar 

  5. Townsend P D. Quantum cryptography on multiuser optical fibre networks. Nature, 1997, 385: 47–49

    Article  Google Scholar 

  6. Elliott C. The DARPA Quantum Network. Boca Raton: CRC Press, 2006

    Google Scholar 

  7. Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantum-key-distribution network in vienna. Int J Quantum Inform, 2008, 06: 209–218

    Article  Google Scholar 

  8. Wang S, Chen W, Yin Z Q, et al. Field test of wavelength-saving quantum key distribution network. Opt Lett, 2010, 35: 2454

    Article  Google Scholar 

  9. Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express, 2010, 18: 27217

    Article  Google Scholar 

  10. Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD network. Opt Express, 2011, 19: 10387

    Article  Google Scholar 

  11. Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt Express, 2014, 22: 21739–21756

    Article  Google Scholar 

  12. Lancho D, Martinezet J, Elkouss D, et al. QKD in standard optical telecommunications networks. In: Proceedings of International Conference on Quantum Comunication and Quantum Networking, 2010. 142–149

  13. Huang D, Huang P, Li H, et al. Field demonstration of a continuous-variable quantum key distribution network. Opt Lett, 2016, 41: 3511–3514

    Article  Google Scholar 

  14. Tang Y L, Yin H L, Zhao Q, et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys Rev X, 2016, 6: 011024

    Google Scholar 

  15. Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431: 430–433

    Article  Google Scholar 

  16. Su X L, Wang M L, Yan Z H, et al. Quantum network based on non-classical light. Sci China Inf Sci, 2020, 63: 180503

    Article  MathSciNet  Google Scholar 

  17. Ren S Y, Wang Y, Su X L. Hybrid quantum key distribution network. Sci China Inf Sci, 2022, 65: 200502

    Article  MathSciNet  Google Scholar 

  18. Su X, Tian C, Deng X, et al. Quantum entanglement swapping between two multipartite entangled states. Phys Rev Lett, 2016, 117: 240503

    Article  Google Scholar 

  19. Deng X, Tian C, Wang M, et al. Quantification of quantum steering in a Gaussian greenberger-horne-zeilinger state. Optics Commun, 2018, 421: 14–18

    Article  Google Scholar 

  20. Hu X M, Guo Y, Liu B H, et al. Progress in quantum teleportation. Nat Rev Phys, 2023, 5: 339–353

    Article  Google Scholar 

  21. Marcikic I, de Riedmatten H, Tittel W, et al. Long-distance teleportation of qubits at telecommunication wavelengths. Nature, 2003, 421: 509–513

    Article  Google Scholar 

  22. Ma X S, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489: 269–273

    Article  Google Scholar 

  23. Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549: 70–73

    Article  Google Scholar 

  24. Furusawa A, Sorensen J L, Braunstein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706–709

    Article  Google Scholar 

  25. Bowen W P, Treps N, Buchler B C, et al. Experimental investigation of continuous-variable quantum teleportation. Phys Rev A, 2003, 67: 032302

    Article  Google Scholar 

  26. Zhang T C, Goh K W, Chou C W, et al. Quantum teleportation of light beams. Phys Rev A, 2003, 67: 033802

    Article  Google Scholar 

  27. Yonezawa H, Braunstein S L, Furusawa A. Experimental demonstration of quantum teleportation of broadband squeezing. Phys Rev Lett, 2007, 99: 110503

    Article  Google Scholar 

  28. Takei N, Aoki T, Koike S, et al. Experimental demonstration of quantum teleportation of a squeezed state. Phys Rev A, 2005, 72: 042304

    Article  Google Scholar 

  29. Lee N, Benichi H, Takeno Y, et al. Teleportation of nonclassical wave packets of light. Science, 2011, 332: 330–333

    Article  Google Scholar 

  30. Takeda S, Mizuta T, Fuwa M, et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 2013, 500: 315–318

    Article  Google Scholar 

  31. Huo M, Qin J, Cheng J, et al. Deterministic quantum teleportation through fiber channels. Sci Adv, 2018, 4: eaas9401

    Article  Google Scholar 

  32. Zhao H, Feng J, Sun J, et al. Real time deterministic quantum teleportation over 10 km of single optical fiber channel. Opt Express, 2022, 30: 3770–3782

    Article  Google Scholar 

  33. Lo H K. Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys Rev A, 2000, 62: 012313

    Article  Google Scholar 

  34. Pogorzalek S, Fedorov K G, Xu M, et al. Secure quantum remote state preparation of squeezed microwave states. Nat Commun, 2019, 10: 2604

    Article  Google Scholar 

  35. Lvovsky A I, Hansen H, Aichele T, et al. Quantum state reconstruction of the single-photon Fock state. Phys Rev Lett, 2001, 87: 050402

    Article  Google Scholar 

  36. Laurat J, Coudreau T, Treps N, et al. Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams. Phys Rev Lett, 2003, 91: 213601

    Article  Google Scholar 

  37. Bimbard E, Jain N, Macrae A, et al. Quantum-optical state engineering up to the two-photon level. Nat Photon, 2010, 4: 243–247

    Article  Google Scholar 

  38. Ulanov A E, Fedorov I A, Sychev D, et al. Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong-Ou-Mandel effect. Nat Commun, 2016, 7: 11925

    Article  Google Scholar 

  39. Han D, Sun F, Wang N, et al. Remote preparation of optical cat states based on Gaussian entanglement. Laser Photon Rev, 2023, 17: 2300103

    Article  Google Scholar 

  40. Le Jeannic H, Cavaillés A, Raskop J, et al. Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica, 2018, 5: 1012

    Article  Google Scholar 

  41. Liu S, Han D, Wang N, et al. Experimental demonstration of remotely creating Wigner negativity via quantum steering. Phys Rev Lett, 2022, 128: 200401

    Article  Google Scholar 

  42. Han D, Wang N, Wang M, et al. Remote preparation and manipulation of squeezed light. Opt Lett, 2022, 47: 3295–3298

    Article  Google Scholar 

  43. van Loock P, Braunstein S L. Multipartite entanglement for continuous variables: a quantum teleportation network. Phys Rev Lett, 2000, 84: 3482–3485

    Article  Google Scholar 

  44. van Loock P. Quantum communication with continuous variables. Fortschr Phys, 2002, 50: 1177–1372

    Article  MathSciNet  Google Scholar 

  45. Takei N, Yonezawa H, Aoki T, et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys Rev Lett, 2005, 94: 220502

    Article  Google Scholar 

  46. Su X, Hao S, Deng X, et al. Gate sequence for continuous variable one-way quantum computation. Nat Commun, 2013, 4: 2828

    Article  Google Scholar 

  47. Weedbrook C, Pirandola S, García-Patrón R, et al. Gaussian quantum information. Rev Mod Phys, 2012, 84: 621–669

    Article  Google Scholar 

  48. Paris M G A, Cola M, Bonifacio R. Remote state preparation and teleportation in phase space. J Opt B-Quantum Semiclass Opt, 2003, 5: 360–364

    Article  Google Scholar 

  49. Kim M S, de Oliveira F A M, Knight P L. Properties of squeezed number states and squeezed thermal states. Phys Rev A, 1989, 40: 2494–2503

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11834010, 62005149), Fundamental Research Program of Shanxi Province (Grant No. 20210302121002), and Fund for Shanxi “1331 Project” Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Su.

Additional information

Supporting information Appendixes A–C. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Han, D., Wang, M. et al. Continuous variable quantum teleportation and remote state preparation between two space-separated local networks. Sci. China Inf. Sci. 67, 142502 (2024). https://doi.org/10.1007/s11432-023-3913-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3913-2

Keywords

Navigation