Skip to main content
Log in

Recent progress of hafnium oxide-based ferroelectric devices for advanced circuit applications

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Hafnium oxide-based ferroelectric field-effect-transistors (FeFET), which combine super-steep logical switching and low power non-volatile memory functions, have significant potential for post-Moore integrated circuit innovations with higher energy efficiency and larger integration scale. In this review, recent research into hafnium oxide-based ferroelectric (FE) films and different functional devices is presented, from fundamentals to applications. Different technological challenges and state-of-the-art research and development efforts related to the physical understanding and performance optimization of FE films, advanced hafnium oxide-based device integration, and device applications in logic-in-memory and artificial synapses and neurons for neuromorphic computing are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shalf J. The future of computing beyond Moore’s Law. Phil Trans R Soc A, 2020, 378: 20190061

    Article  MathSciNet  MATH  Google Scholar 

  2. Zou X, Xu S, Chen X, et al. Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci China Inf Sci, 2021, 64: 160404

    Article  Google Scholar 

  3. Kim K. The smallest engine transforming humanity: the past, present, and future. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2021. 1–6

  4. Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics. Nat Electron, 2018, 1: 442–450

    Article  Google Scholar 

  5. Zhu J, Zhang T, Yang Y, et al. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev, 2020, 7: 011312

    Article  Google Scholar 

  6. Salahuddin S, Datta S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett, 2008, 8: 405–410

    Article  Google Scholar 

  7. Wu C, Huang Q, Zhao Y, et al. A novel tunnel FET design with stacked source configuration for average subthreshold swing reduction. IEEE Trans Electron Dev, 2016, 63: 5072–5076

    Article  Google Scholar 

  8. Liu F, Qiu C, Zhang Z, et al. First principles simulation of energy efficient switching by source density of states engineering. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2018

  9. Sung M, Rho K, Kim J, et al. Low voltage and high speed 1Xnm 1T1C FE-RAM with ultra-thin 5nm HZO. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2021

  10. Wu W, Wu H, Gao B, et al. Improving analog switching in HfOx-based resistive memory with a thermal enhanced layer. IEEE Electron Dev Lett, 2017, 38: 1019–1022

    Article  MathSciNet  Google Scholar 

  11. Song Z, Cai D, Li X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2018

  12. Kang W, Huang Y, Zhang X, et al. Skyrmion-electronics: an overview and outlook. Proc IEEE, 2016, 104: 2040–2061

    Article  Google Scholar 

  13. Wong J C, Salahuddin S. Negative capacitance transistors. Proc IEEE, 2018, 107: 49–62

    Article  Google Scholar 

  14. Si M, Saha A K, Gao S, et al. A ferroelectric semiconductor field-effect transistor. Nat Electron, 2019, 2: 580–586

    Article  Google Scholar 

  15. Beyer S, Dünkel S, Trentzsch M, et al. FeFET: a versatile CMOS compatible device with game-changing potential. In: Proceedings of IEEE International Memory Workshop (IMW), 2020. 1–4

  16. Moll J L, Tarui Y. A new solid state memory resistor. IEEE Trans Electron Dev, 1963, 10: 338

    Article  Google Scholar 

  17. Fong D D, Stephenson G B, Streiffer S K, et al. Ferroelectricity in ultrathin perovskite films. Science, 2004, 304: 1650–1653

    Article  Google Scholar 

  18. Ihlefeld J F, Harris D T, Keech R, et al. Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure- property relations. J Am Ceram Soc, 2016, 99: 2537–2557

    Article  Google Scholar 

  19. Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99: 102903

    Article  Google Scholar 

  20. Lee M H, Wei Y T, Chu K Y, et al. Steep slope and near non-hysteresis of FETs with antiferroelectric-like HfZrO for low-power electronics. IEEE Electron Dev Lett, 2015, 36: 294–296

    Article  Google Scholar 

  21. Kwon D, Chatterjee K, Tan A J, et al. Improved subthreshold swing and short channel effect in FDSOI n-channel negative capacitance field effect transistors. IEEE Electron Dev Lett, 2017, 39: 300–303

    Article  Google Scholar 

  22. Dünkel S, Trentzsch M, Richter R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017. 485–488

  23. Lederer M, Kämpfe T, Olivo R, et al. Local crystallographic phase detection and texture mapping in ferroelectric Zr doped HfO2 films by transmission-EBSD. Appl Phys Lett, 2019, 115: 222902

    Article  Google Scholar 

  24. Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2. Nat Rev Mater, 2022, 7: 653–669

    Article  Google Scholar 

  25. Xiao W, Peng Y, Zheng S, et al. Integration and electrical properties of ferroelectric Hf0.5Zr0.5O2 thin film on bulk β-Ga2O3(-201) substrate for memory applications. IEEE Electron Dev Lett, 2018, 39: 1504–1507

    Google Scholar 

  26. Wang X, Qu Y, Yang F, et al. A highly compact nonvolatile ternary content addressable memory (TCAM) with ultralow power and 200-ps search operation. IEEE Trans Electron Dev, 2022, 69: 4259–4264

    Article  Google Scholar 

  27. Wen Z, Wu D. Ferroelectric tunnel junctions: modulations on the potential barrier. Adv Mater, 2020, 32: 1904123

    Article  Google Scholar 

  28. Yu J, Wang T, Li Z, et al. Improved ferroelectricity and tunneling electro resistance in Zr-rich HfxZri1−xO2 ferroelectric tunnel junction. IEEE Electron Dev Lett, 2023, 44: 245–248

    Article  Google Scholar 

  29. Chang P, Du G, Kang J, et al. Conduction mechanisms of metal-ferroelectric- insulator-semiconductor tunnel junction on N- and P-type semiconductor. IEEE Electron Dev Lett, 2021, 42: 118–121

    Article  Google Scholar 

  30. Seo M, Kang M H, Jeon S B, et al. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Dev Lett, 2018, 39: 1445–1448

    Article  Google Scholar 

  31. Lederer M, Kampfe T, Ali T, et al. Ferroelectric field effect transistors as a synapse for neuromorphic application. IEEE Trans Electron Dev, 2021, 68: 2295–2300

    Article  Google Scholar 

  32. Kim M K, Kim I J, Lee J S. CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks. Sci Adv, 2022, 8: 8537

    Article  Google Scholar 

  33. Mulaosmanovic H, Mikolajick T, Slesazeck S. Accumulative polarization reversal in nanoscale ferroelectric transistors. ACS Appl Mater Interfaces, 2018, 10: 23997–24002

    Article  Google Scholar 

  34. Khan A I, Keshavarzi A, Datta S. The future of ferroelectric field-effect transistor technology. Nat Electron, 2020, 3: 588–597

    Article  Google Scholar 

  35. Kim J Y, Choi M J, Jang H W. Ferroelectric field effect transistors: progress and perspective. APL Mater, 2021, 9: 021102

    Article  Google Scholar 

  36. Li Z, Wang T, Liu Y, et al. Understanding the effect of oxygen content on ferroelectric properties of Al-doped HfO thin films. IEEE Electron Dev Lett, 2022, 44: 56–59

    Article  Google Scholar 

  37. Han Q, Aleksa P, Tromm T C U, et al. Transient negative capacitance and charge trapping in FDSOI MOSFETs with ferroelectric HfYOX. Solid-State Electron, 2019, 159: 71–76

    Article  Google Scholar 

  38. Zarubin S, Suvorova E, Spiridonov M, et al. Fully ALD-grown TiN7Hf0.5Zr0.5O2/TiN stacks: ferroelectric and structural properties. Appl Phys Lett, 2016, 109: 192903

    Article  Google Scholar 

  39. Schroeder U, Yurchuk E, Müller J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn J Appl Phys, 2014, 53: 08LE02

    Article  Google Scholar 

  40. Valasek J. Piezo-electric and allied phenomena in Rochelle salt. Phys Rev, 1921, 17: 475–481

    Article  Google Scholar 

  41. Fei R, Kang W, Yang L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys Rev Lett, 2016, 117: 097601

    Article  Google Scholar 

  42. Huan T D, Sharma V, Rossetti G A, et al. Pathways towards ferroelectricity in hafnia. Phys Rev B, 2014, 90: 064111

    Article  Google Scholar 

  43. Nukala P, Ahmadi M, Wei Y, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science, 2021, 372: 630–635

    Article  Google Scholar 

  44. Park M H, Lee Y H, Kim H J, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater, 2015, 27: 1811–1831

    Article  Google Scholar 

  45. Hsain H A, Lee Y, Materano M, et al. Many routes to ferroelectric HfO2: a review of current deposition methods. J Vacuum Sci Tech A, 2022, 40: 010803

    Article  Google Scholar 

  46. Rushchanskii K Z, Blügel S, Ledžaić M. Ordering of oxygen vacancies and related ferroelectric properties in HfO2−. Phys Rev Lett, 2021, 127: 087602

    Article  Google Scholar 

  47. Liu C, Liu F, Luo Q, et al. Role of oxygen vacancies in electric field cycling behaviors of ferroelectric hafnium oxide. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2018

  48. Wei W, Zhang W, Wang F, et al. Deep insights into the failure mechanisms in field-cycled ferroelectric Hf0.5Zr0.5O2 thin film: TDDB characterizations and first-principles calculations. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020

  49. Li X, Wu J, Lu T, et al. Temperature-dependent defect behaviors in ferroelectric Hf0.5Zr0.5O2 thin film: re-wakeup phenomenon and underlying mechanisms. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2022

  50. Xin T, Zheng Y, Cheng Y, et al. Atomic visualization of the emergence of orthorhombic phase in Hf0.5Zr0.5O2 ferroelectric film with in-situ rapid thermal annealing. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits (VLSI), 2022. 343–344

  51. Zheng Y, Zheng Y, Gao Z, et al. Atomic-scale characterization of defects generation during fatigue in ferroelectric Hf0.5Zr0.5O2 films: vacancy generation and lattice dislocation. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2021

  52. Mueller S, Muller J, Hoffmann R, et al. From MFM capacitors toward ferroelectric transistors: endurance and disturb characteristics of HfO2-based FeFET devices. IEEE Trans Electron Devices, 2013, 60: 4199–4205

    Article  Google Scholar 

  53. Park M H, Kim H J, Kim Y J, et al. Effect of Zr content on the wake-up effect in Hf1−xZrxO2 films. ACS Appl Mater Interfaces, 2016, 8: 15466–15475

    Article  Google Scholar 

  54. Pesic M, Fengler F P G, Larcher L, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv Funct Mater, 2016, 26: 4601–4612

    Article  Google Scholar 

  55. Starschich S, Menzel S, Böttger U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl Phys Lett, 2016, 108: 032903

    Article  Google Scholar 

  56. Chatterjee K, Kim S, Karbasian G, et al. Self-aligned, gate last, FDSOI, ferroelectric gate memory device with 5.5-nm Hf0.8Zr0.2O2, high endurance and breakdown recovery. IEEE Electron Dev Lett, 2017, 38: 1379–1382

    Article  Google Scholar 

  57. Lomenzo P D, Slesazeck S, Hoffmann M, et al. Ferroelectric Hfi1−xZrxO2 memories: device reliability and depolarization fields. In: Proceedings of the 19th Non-Volatile Memory Technology Symposium (NVMTS), 2019. 1–8

  58. Zhang F, Luo Z D, Yang Q, et al. Evolution of the interfacial layer and its impact on electric-field-cycling behaviors in ferroelectric Hfi1−xZrxO2. ACS Appl Mater Interfaces, 2022, 14: 11028–11037

    Article  Google Scholar 

  59. Peng Y, Xiao W, Han G, et al. Memory behavior of an Al2O3 gate dielectric non-volatile field-effect transistor. IEEE Electron Dev Lett, 2020, 41: 1340–1343

    Article  Google Scholar 

  60. Liao P J, Chang Y K, Lee Y-H, et al. Characterization of fatigue and its recovery behavior in ferroelectric HfZrO. In: Proceedings of Symposium on VLSI Technology, 2021

  61. Yurchuk E, Mueller S, Martin D, et al. Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories. In: Proceedings of IEEE International Reliability Physics Symposium, 2014

  62. Yurchuk E, Muller J, Muller S, et al. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories. IEEE Trans Electron Dev, 2016, 63: 3501–3507

    Article  Google Scholar 

  63. Gong N, Ma T P. A study of endurance issues in HfO2-based ferroelectric field effect transistors: charge trapping and trap generation. IEEE Electron Dev Lett, 2018, 39: 15–18

    Article  Google Scholar 

  64. Zhao S, Tian F, Xu H, et al. Experimental extraction and simulation of charge trapping during endurance of FeFET with TiN/HfZrO/SiO2/Si (MFIS) gate structure. IEEE Trans Electron Dev, 2022, 69: 1561–1567

    Article  Google Scholar 

  65. You W X, Huang B K, Su P. An alternative way for reconfigurable logic-in-memory with ferroelectric FET. IEEE Trans Electron Dev, 2021, 69: 444–446

    Article  Google Scholar 

  66. Kim S J, Narayan D, Lee J G, et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress- induced crystallization at low thermal budget. Appl Phys Lett, 2017, 111: 242901

    Article  Google Scholar 

  67. Xiao W, Liu C, Peng Y, et al. Performance improvement of Hf0.5Zr0.5O2-based ferroelectric-field-effect transistors with ZrO2 seed layers. IEEE Electron Dev Lett, 2019, 40: 714–717

    Article  Google Scholar 

  68. Kim H B, Jung M, Oh Y, et al. Superior and stable ferroelectric properties of hafnium-zirconium-oxide thin films deposited via atomic layer deposition using cyclopentadienyl-based precursors without annealing. Nanoscale, 2021, 13: 8524–8530

    Article  Google Scholar 

  69. Shiraishi T, Katayama K, Yokouchi T, et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl Phys Lett, 2016, 108: 262904

    Article  Google Scholar 

  70. Kim B Y, Park H W, Hyun S D, et al. Enhanced ferroelectric properties in Hf0.5Zr0.5O2 films using a HfO0.61N0.72 interfacial layer. Adv Elect Mater, 2022, 8: 2100042

    Article  Google Scholar 

  71. Lomenzo P D, Takmeel Q, Moghaddam S, et al. Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films, 2016, 615: 139–144

    Article  Google Scholar 

  72. Chen K Y, Chen P H, Kao R W, et al. Impact of plasma treatment on reliability performance for HfZrOx-based metal- ferroelectric-metal capacitors. IEEE Electron Dev Lett, 2017, 39: 87–90

    Article  Google Scholar 

  73. Dang Z, Lv S, Gao Z, et al. Improved endurance of Hf0.5Zr0.5O2-based ferroelectric capacitor through optimizing the Ti-N ratio in TiN electrode. IEEE Electron Dev Lett, 2022, 43: 561–564

    Article  Google Scholar 

  74. Cao R, Liu Q, Liu M, et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Dev Lett, 2019, 40: 1744–1747

    Article  Google Scholar 

  75. Cai Y, Zhang Q, Zhang Z, et al. Influence of applied stress on the ferroelectricity of thin Zr-doped HfO2 films. Appl Sci, 2021, 11: 4295

    Article  Google Scholar 

  76. Chernikova A G, Kozodaev M G, Negrov D V, et al. Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl Mater Interfaces, 2018, 10: 2701–2708

    Article  Google Scholar 

  77. Tian G, Xu G, Yin H, et al. Improved ferroelectricity and endurance of Hf0.5Zr0.5O2 thin films in low thermal budget with novel bottom electrode doping technology. Adv Mater Inter, 2022, 9: 2102351

    Article  Google Scholar 

  78. Müller J, Polakowski P, Muller S, et al. High endurance strategies for hafnium oxide based ferroelectric field effect transistor. In: Proceedings of Non-Volatile Memory Technology Symposium (NVMTS), 2016. 1–7

  79. Mulaosmanovic H, Breyer E T, Mikolajick T, et al. Recovery of cycling endurance failure in ferroelectric FETs by self-heating. IEEE Electron Dev Lett, 2018, 40: 216–219

    Article  Google Scholar 

  80. Oh S, Song J, Yoo I K, et al. Improved endurance of HfO2-based metal- ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing. IEEE Electron Dev Lett, 2019, 40: 1092–1095

    Article  Google Scholar 

  81. Chan C-Y, Chen K-Y, Peng H-K, et al. FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON. In: Proceedings of Symposium on VLSI Technology, 2020. 1–2

  82. Chen Y H, Su C J, Yang T H, et al. Improved TDDB reliability and interface states in 5-nm Hf0.5Zr0.5O2 ferroelectric technologies using NH3 plasma and microwave annealing. IEEE Trans Electron Dev, 2020, 67: 1581–1585

    Article  Google Scholar 

  83. Tan A J, Liao Y H, Wang L C, et al. Ferroelectric HfO2 memory transistors with high-κ interfacial layer and write endurance exceeding 1010 cycles. IEEE Electron Dev Lett, 2021, 42: 994–997

    Article  Google Scholar 

  84. De S, Lu D, Le H, et al. Ultra-low power robust 3 bit/cell Hf0.5Zr0.5O2 ferroelectric FinFET with high endurance for advanced computing-in-memory technology. In: Proceedings of Symposium on VLSI Technology, 2021. 1–2

  85. Hoffmann M, Fengler F P G, Herzig M, et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature, 2019, 565: 464–467

    Article  Google Scholar 

  86. Khan A I, Yeung C W, Hu C M, et al. Ferroelectric negative capacitance MOSFET: capacitance tuning antiferroelectric operation. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2011

  87. Hoffmann M. Toward negative capacitance electronics. Innov Emerg Technol, 2022, 09: 2240002

    Article  Google Scholar 

  88. Sharma P, Zhang J, Ni K, et al. Time-resolved measurement of negative capacitance. IEEE Electron Dev Lett, 2018, 39: 272–275

    Article  Google Scholar 

  89. Ni K, Chakraborty W, Smith J, et al. Fundamental understanding and control of device-to-device variation in deeply scaled ferroelectric FETs. In: Proceedings of Symposium on VLSI Technology, 2019

  90. Khandelwal S, Duarte J P, Khan A I, et al. Impact of parasitic capacitance and ferroelectric parameters on negative capacitance FinFET characteristics. IEEE Electron Dev Lett, 2017, 38: 142–144

    Article  Google Scholar 

  91. Huang W, Zhu H, Wu Z, et al. Investigation of negative DIBL effect and Miller effect for negative capacitance nanowire field-effect-transistors. IEEE J Electron Dev Soc, 2020, 8: 879–884

    Article  Google Scholar 

  92. Saha A K, Sharma P, Dabo I, et al. Ferroelectric transistor model based on self-consistent solution of 2D Poisson’s, non-equilibrium Green’s function and multi-domain Landau Khalatnikov equations. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017

  93. Hoffmann M, Pesic M, Slesazeck S, et al. Modeling and design considerations for negative capacitance field-effect transistors. In: Proceedings of Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), 2017. 1–4

  94. Dong Y, Chen D, Zhong N, et al. Systematic interpretation of time effect on negative capacitance of ferroelectrics based on electrostatics and charge dynamics. IEEE Trans Electron Dev, 2022, 69: 5913–5920

    Article  Google Scholar 

  95. Saha A K, Datta S, Gupta S K. “Negative capacitance” in resistor-ferroelectric and ferroelectric-dielectric networks: apparent or intrinsic? J Appl Phys, 2018, 123: 105102

    Article  Google Scholar 

  96. Gong N, Sun X, Jiang H, et al. Nucleation limited switching (NLS) model for HfO2-based metal-ferroelectric-metal (MFM) capacitors: switching kinetics and retention characteristics. Appl Phys Lett, 2018, 112: 262903

    Article  Google Scholar 

  97. Huo J, Huang W, Zhang F, et al. Investigation on negative capacitance FinEFT beyond 7 nm node from device to circuit. MicroElectron J, 2021, 116: 105196

    Article  Google Scholar 

  98. Karda K, Jain A, Mouli C, et al. An anti-ferroelectric gated Landau transistor to achieve sub-60 mV/dec switching at low voltage and high speed. Appl Phys Lett, 2015, 106: 163501

    Article  Google Scholar 

  99. Lee M H, Chen K-T, Liao C-Y, et al. Bi-directional sub-60 mV/dec, hysteresis-free, reducing onset voltage and high speed response of ferroelectric-antiferroelectric Hf0.25Zr0.75O2 negative capacitance FETs. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019

  100. Lyu X, Si M, Sun X, et al. Ferroelectric and anti-ferroelectric hafnium zirconium oxide: scaling limit, switching speed and record high polarization density. In: Proceedings of Symposium on VLSI Technology, 2019

  101. Zhang F, Peng Y, Deng X, et al. Theoretical study of negative capacitance FinFET with quasi-antiferroelectric material. IEEE Trans Electron Dev, 2021, 68: 3074–3079

    Article  Google Scholar 

  102. Hoffmann M, Wang Z, Tasneem N, et al. Antiferroelectric negative capacitance from a structural phase transition in zirconia. Nat Commun, 2022, 13: 1228

    Article  Google Scholar 

  103. Hu V P H, Chiu P C, Sachid A B, et al. Negative capacitance enables FinFET and FDSOI scaling to 2 nm node. In: Proceedings of International Electron Devices Meeting (IEDM), 2017

  104. Krivokapic Z, Aziz A, Song D, et al. NCFET: opportunities challenges for advanced technology nodes. In: Proceedings of the 5th Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), 2017

  105. Krivokapic Z, Rana U, Galatage R, et al. 14 nm ferroelectric FinFET technology with steep subthreshold slope for ultra-low power applications. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017

  106. Zhou J, Han G, Li Q, et al. Ferroelectric HfZrOx Ge and GeSn PMOSFETs with sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved IDS. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2016

  107. Li K S, Chen P G, Lai T Y, et al. Sub-60mV-swing negative-capacitance FinFET without hysteresis. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015

  108. Zhang Z, Xu G, Zhang Q, et al. FinFET with improved subthreshold swing and drain current using 3-nm ferroelectric Hf0.25Zr0.75O2. IEEE Electron Dev Lett, 2019, 40: 367–370

    Article  Google Scholar 

  109. Kwon D, Cheema S, Shanker N, et al. Negative capacitance FET with 1.8-nm-thick Zr-doped HfO2 oxide. IEEE Electron Dev Lett, 2019, 40: 993–996

    Article  Google Scholar 

  110. Cai Y, Zhang Q, Zhang Z, et al. Endurance characteristics of negative capacitance FinFETs with negligible hysteresis. IEEE Electron Dev Lett, 2020, 42: 260–263

    Article  Google Scholar 

  111. Li X Y, Toriumi A. Direct relationship between sub-60 mV/dec subthreshold swing and internal potential instability in MOSFET externally connected to ferroelectric capacitor. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2018

  112. Sun X Q, Zhang Y Y, Xiang J J, et al. The effect of interface traps at the Si/SiO2 interface on the transient negative capacitance of ferroelectric FETs. IEEE Trans Electron Dev, 2021, 68: 4735–4740

    Article  Google Scholar 

  113. Liu Z, Bhuiyan M A, Ma T P. A critical examination of’ quasi-static negative capacitance’ (QSNC) theory. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2018

  114. Jin C, Saraya T, Hiramoto T, et al. Transient negative capacitance as cause of reverse drain-induced barrier lowering and negative differential resistance in ferroelectric FETs. In: Proceedings of Symposium on VLSI Technology, 2019

  115. Khan A I, Chatterjee K, Wang B, et al. Negative capacitance in a ferroelectric capacitor. Nat Mater, 2015, 14: 182–186

    Article  Google Scholar 

  116. Kobayashi M, Ueyama N, Jang K, et al. Experimental study on polarization-limited operation speed of negative capacitance FET with ferroelectric HfO2. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2016

  117. Hoffmann M, Pešić M, Chatterjee K, et al. Direct observation of negative capacitance in polycrystalline ferroelectric HKO2. Adv Funct Mater, 2016, 26: 8643–8649

    Article  Google Scholar 

  118. Kim Y J, Park H W, Hyun S D, et al. Voltage drop in a ferroelectric single layer capacitor by retarded domain nucleation. Nano Lett, 2017, 17: 7796–7802

    Article  Google Scholar 

  119. Wang H, Yang M, Huang Q, et al. New insights into the physical origin of negative capacitance and hysteresis in NCFETs. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2018

  120. Chang S C, Avci U E, Nikonov D E, et al. Physical origin of transient negative capacitance in a ferroelectric capacitor. Phys Rev Appl, 2018, 9: 014010

    Article  Google Scholar 

  121. Cheema S S, Shanker N, Wang L C, et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature, 2022, 604: 65–71

    Article  Google Scholar 

  122. Shanker N, Wang L C, Cheema S, et al. On the PBTI reliability of low EOT negative capacitance 1.8 nm HfO2-ZrO2 superlattice gate stack on Lg = 90 nm nFETs. In: Proceedings of Symposium on VLSI Technology and Circuits, 2022. 421–422

  123. Yin X, Ni K, Reis D, et al. An ultra-dense 2FeFET TCAM design based on a multi-domain FeFET model. IEEE Trans Circ Syst II, 2018, 66: 1577–1581

    Google Scholar 

  124. Horie S, Noda K, Yamada H, et al. Flexible programmable logic gate using organic ferroelectric multilayer. Appl Phys Lett, 2007, 91: 193506

    Article  Google Scholar 

  125. Breyer E T, Mulaosmanovic H, Mikolajick T, et al. Reconfigurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI FeFET technology. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017

  126. Zhang Z, Luo Y, Cui Y, et al. A polarization-switching, charge-trapping, modulated arithmetic logic unit for in-memory computing based on ferroelectric fin field-effect transistors. ACS Appl Mater Interfaces, 2022, 14: 6967–6976

    Article  Google Scholar 

  127. Ni K, Yin X, Laguna A F, et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nat Electron, 2019, 2: 521–529

    Article  Google Scholar 

  128. Zhang Z, Mao S, Xu G, et al. An ultra-dense one-transistor ternary-content-addressable memory array based on non-volatile and ambipolar fin field-effect transistors. IEEE Trans Electron Dev, 2023, 70: 1029–1033

    Article  Google Scholar 

  129. Luo J, Xu W, Fu B, et al. A novel ambipolar ferroelectric tunnel FinFET based content addressable memory with ultra-low hardware cost and high energy efficiency for machine learning. In: Proceedings of Symposium on VLSI Technology and Circuits, 2022. 226–227

  130. Yin X, Li C, Huang Q, et al. FeCAM: a universal compact digital and analog content addressable memory using ferroelectric. IEEE Trans Electron Dev, 2020, 67: 2785–2792

    Article  Google Scholar 

  131. Li C, Muüller F, Ali T, et al. A scalable design of multi-bit ferroelectric content addressable memory for datacentric computing. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020

  132. Zhang Z, Zhang F, Zhang Y, et al. Ultradense one-memristor ternary-content-addressable memory based on ferroelectric diodes. IEEE Electron Dev Lett, 2023, 44: 64–67

    Article  Google Scholar 

  133. Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Netw, 1997, 10: 1659–1671

    Article  Google Scholar 

  134. Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345: 668–673

    Article  Google Scholar 

  135. Camunas-Mesa L, Linares-Barranco B, Serrano-Gotarredona T. Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. Materials, 2019, 12: 2745

    Article  Google Scholar 

  136. Burr G W, Shelby R M, Sebastian A, et al. Neuromorphic computing using non-volatile memory. Adv Phys-X, 2017, 2: 89–124

    Google Scholar 

  137. Mulaosmanovic H, Ocker J, Muller S, et al. Novel ferroelectric FET based synapse for neuromorphic systems. In: Proceedings of Symposium on VLSI Technology, 2017

  138. Müller J, Yurchuk E, Schlösser T, et al. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. In: Proceedings of Symposium on VLSI Technology (VLSI) 2012. 25–26

  139. Peng Y, Xiao W, Liu F, et al. Non-volatile field-effect transistors enabled by oxygen vacancy-related dipoles for memory and synapse applications. IEEE Trans Electron Dev, 2020, 67: 3632–3636

    Article  Google Scholar 

  140. Kim M K, Lee J S. Ferroelectric analog synaptic transistors. Nano Lett, 2019, 19: 2044–2050

    Article  Google Scholar 

  141. Huang W, Zhu H, Zhang Y, et al. HfO2-based ferroelectric field-effect-transistor with large memory window and good synaptic behavior. ECS J Solid State Sci Technol, 2021, 10: 065012

    Article  Google Scholar 

  142. Tian G, Bi J, Xu G, et al. Hf0.25Zr0.75O2-based ferroelectric bionic electronic synapse device with highly symmetrical and linearity weight modification. Electron Lett, 2020, 56: 840–843

    Article  Google Scholar 

  143. Aabrar K A, Kirtania S G, Liang F X, et al. BEOL-compatible superlattice FEFET analog synapse with improved linearity and symmetry of weight update. IEEE Trans Electron Dev, 2022, 69: 2094–2100

    Article  Google Scholar 

  144. Tsai S H, Fang Z, Wang X, et al. Stress-memorized HZO for high-performance ferroelectric field-effect memtransistor. ACS Appl Electron Mater, 2022, 4: 1642–1650

    Article  Google Scholar 

  145. Stevens C F, Zador A M. Novel integrate-and-re-like model of repetitive firing in cortical neurons. American Physiological Society, 1998

  146. Dutta S, Schafer C, Gomez J, et al. Supervised learning in all FeFET-based spiking neural network: opportunities and challenges. Front Neurosci, 2020, 14: 634

    Article  Google Scholar 

  147. Sourikopoulos I, Hedayat S, Loyez C, et al. A 4-fJ/spike artificial neuron in 65 nm CMOS technology. Front Neurosci, 2017, 11: 123

    Article  Google Scholar 

  148. Mulaosmanovic H, Chicca E, Bertele M, et al. Mimicking biological neurons with a nanoscale ferroelectric transistor. Nanoscale, 2018, 10: 21755–21763

    Article  Google Scholar 

  149. Chen C, Yang M, Liu S, et al. Bio-inspired neurons based on novel leaky-FeFET with ultra-low hardware cost and advanced functionality for all-ferroelectric neural network. In: Proceedings of Symposium on VLSI Technology, 2019

  150. Luo J, Yu L T, Liu T Y, et al. Capacitor-less stochastic leaky-FeFET neuron of both excitatory and inhibitory connections for SNN with reduced hardware cost. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019

  151. Zhu X, Li D, Liang X, et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat Mater, 2019, 18: 141–148

    Article  Google Scholar 

  152. Huo J, Yin H, Zhang Y, et al. Quasi-volatile MoS2 barristor memory for 1T compact neuron by correlative charges trapping and Schottky barrier modulation. ACS Appl Mater Interfaces, 2022, 14: 57440–57448

    Article  Google Scholar 

  153. Cao R, Zhang X, Liu S, et al. Compact artificial neuron based on anti-ferroelectric transistor. Nat Commun, 2022, 13: 7018

    Article  Google Scholar 

  154. Lee G, Kim H J, Shin E J, et al. A novel split-gate ferroelectric FET for a compact and energy efficient neuron. IEEE Electron Dev Lett, 2022, 43: 1375–1378

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 92064003, 91964202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxiang Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Tian, G., Huo, J. et al. Recent progress of hafnium oxide-based ferroelectric devices for advanced circuit applications. Sci. China Inf. Sci. 66, 200405 (2023). https://doi.org/10.1007/s11432-023-3780-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3780-7

Keywords

Navigation