Skip to main content
Log in

On the uniqueness of virtual substrate for metasurface in a dielectric half-space

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the uniqueness of a virtual substrate for periodic metallic elements in a dielectric half-space. When the periodic metallic elements are placed at the interface of different substrates, they can be regarded to be embedded into a virtual substrate whose thickness approaches zero. However, the process of the mathematical limit of the thickness seems to be independent of the choice of the virtual substrate. Thereby, it is necessary to verify whether the arbitrary virtual substrate holds for the case. It is theoretically verified that the permittivity of the virtual substrate should be unique in order to satisfy the physical boundary condition of the periodic metallic elements. The root of the phenomenon is that the mathematical limit gives the alternative means to approach the actual physical situation, but the actual physical situation determines the way how the mathematical limit approaches zero. Finally, for comparison, two different virtual substrates are designed to validate the theory, for alternative substrate, incidence angle, and metallic elements. Besides, the finding can also be used to simplify the analysis and design of the metasurface by converting the periodic metallic elements in a dielectric half-space to the same periodic metallic elements in a uniform substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater, 2014, 13: 139–150

    Article  Google Scholar 

  2. Li A B, Kim S, Luo Y, et al. High-power transistor-based tunable and switchable metasurface absorber. IEEE Trans Microw Theory Tech, 2017, 65: 2810–2818

    Article  Google Scholar 

  3. Chen Z B, Deng H, Xiong Q, et al. Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units. Appl Phys A, 2018, 124: 281

    Article  Google Scholar 

  4. Lin F H, Chen Z N. Low-profile wideband metasurface antennas using characteristic mode analysis. IEEE Trans Antennas Propagat, 2017, 65: 1706–1713

    Article  MathSciNet  MATH  Google Scholar 

  5. Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett, 2014, 113: 023902

    Article  Google Scholar 

  6. Ma H F, Wang G Z, Kong G S, et al. Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt Mater Express, 2014, 4: 1717–1724

    Article  Google Scholar 

  7. Shi J H, Ma H F, Guan C Y, et al. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces. Phys Rev B, 2014, 89: 165128

    Article  Google Scholar 

  8. Guo W L, Wang G M, Li T J, et al. Ultra-thin anisotropic metasurface for polarized beam splitting and reflected beam steering applications. J Phys D-Appl Phys, 2016, 49: 425305

    Article  Google Scholar 

  9. Xu J J, Zhang H C, Zhang Q, et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl Phys Lett, 2015, 106: 021102

    Article  Google Scholar 

  10. Wu C J, Cheng Y C, Wang W Y, et al. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling. Appl Phys Express, 2015, 8: 122001

    Article  Google Scholar 

  11. Fan Y, Wang J F, Li Y F, et al. Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface. IEEE Trans Antennas Propagat, 2018, 66: 203–208

    Article  Google Scholar 

  12. Chen M L N, Jiang L J, Sha W E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies. IEEE Trans Antennas Propagat, 2017, 65: 396–400

    Article  Google Scholar 

  13. Chen X M, Xue W, Shi H Y, et al. Orbital angular momentum multiplexing in highly reverberant environments. IEEE Microw Wireless Compon Lett, 2020, 30: 112–115

    Article  Google Scholar 

  14. Estakhri N M, Alu A. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces. Antennas Wirel Propag Lett, 2014, 13: 1775–1778

    Article  Google Scholar 

  15. Yang Y H, Jing L Q, Zheng B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater, 2016, 28: 6866–6871

    Article  Google Scholar 

  16. Zhao Y, Cao X Y, Gao J, et al. Broadband low-RCS metasurface and its application on antenna. IEEE Trans Antennas Propagat, 2016, 64: 2954–2962

    Article  Google Scholar 

  17. Yang J J, Cheng Y Z, Ge C C, et al. Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction. Materials, 2018, 11: 626

    Article  Google Scholar 

  18. Gao X, Han X, Cao W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface. IEEE Trans Antennas Propagat, 2015, 63: 3522–3530

    Article  MathSciNet  MATH  Google Scholar 

  19. Fang C, Cheng Y Z, He Z Q, et al. A broadband reflective linear polarization converter based on multi-reflection interference theory. In: Proceedings of Progress in Electromagnetic Research Symposium (PIERS), 2016. 3033–3036

  20. Hoppe D, Rahmat-Samii Y. Impedance Boundary Conditions in Electromagnetics. Boca Raton: CRC Press, 1995

    Google Scholar 

  21. Tretyakov S. Analytical Modeling in Applied Electromagnetics. Norwood: Artech House, 2003

    MATH  Google Scholar 

  22. Padooru Y, Yakovlev A, Chen P, et al. Analytical modeling of conformal mantle cloaks for cylindrical objects using subwave-length printed and slotted arrays. J Appl Phys, 2013, 114: 074508

    Google Scholar 

  23. Jiang S C, Xiong X, Hu Y S, et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys Rev X, 2014, 4: 021026

    Google Scholar 

  24. Liu X B, Li W, Zhao Z Z, et al. Tangential network transmission theory of reflective metasurface with obliquely incident plane waves. IEEE Trans Microw Theory Tech, 2018, 66: 64–72

    Article  Google Scholar 

  25. Vahabzadeh Y, Chamanara N, Caloz C. Generalized sheet transition condition FDTD simulation of metasurface. IEEE Trans Antennas Propagat, 2018, 66: 271–280

    Article  Google Scholar 

  26. Luukkonen O, Simovski C, Granet G, et al. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans Antennas Propagat, 2008, 56: 1624–1632

    Article  Google Scholar 

  27. Liu X B, Zhang J S, Chen X M, et al. A generalized accurate model for complementary periodic subwavelength metasurface based on babinet principle. IEEE Trans Antennas Propagat, 2020, 68: 3780–3790

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61801366) and Natural Science Foundation of Shaanxi Province (Grant No. 2020JM-078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Chen, Anxue Zhang or Zongben Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xue, W., Chen, X. et al. On the uniqueness of virtual substrate for metasurface in a dielectric half-space. Sci. China Inf. Sci. 65, 112302 (2022). https://doi.org/10.1007/s11432-020-3230-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3230-4

Keywords

Navigation