Skip to main content
Log in

Robust MMSE precoding for massive MIMO transmission with hardware mismatch

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Due to hardware mismatch, the channel reciprocity of time-division duplex massive multiple-input multiple-output system is impaired. Under this condition, there exist several different approaches for base station (BS) to obtain downlink (DL) channel information based on the minimum mean-square-error (MMSE) estimation method. In this paper, we show that with the hardware mismatch parameters BS can obtain the same DL channel information via these different approaches. As the obtained DL channel information is usually imperfect, we propose a precoding technique based on the criterion that minimizes the mean-square-error (MSE) of signal detection at the user terminals (UTs). The proposed precoding is robust to the channel estimation error and significantly improves the system performance compared to the conventional regularized zero-forcing precoding. Furthermore, we derive an asymptotic approximation of the ergodic sum rate for the proposed precoding using the large dimensional random matrix theory, which is tight as the number of antennas both at the BS and UT approach infinity with a fixed non-zero and finite ratio. This approximation can provide a reliable sum rate prediction at a much lower computation cost than Monte Carlo simulations. Simulation results show that the approximation is accurate even for a realistic system dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590–3600

    Article  Google Scholar 

  2. Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60

    Article  Google Scholar 

  3. Larsson E G, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 2: 186–195

    Article  Google Scholar 

  4. Gao X, Edfors O, Fredrik R, et al. Linear pre-coding performance in measured very-large MIMO channels. In: Proceedings of IEEE Vehicular Technology Conference (VTC Fall), San Francisco, 2011. 1–5

    Google Scholar 

  5. Marzetta T L. How much training is required for multiuser MIMO. In: Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2006. 359–363

    Google Scholar 

  6. Wang D M, Zhang Y, Wei H, et al. An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications. Sci China Inf Sci, 2016, 59: 081301

    Article  Google Scholar 

  7. Schenk T. RF Imperfections in High-rate Wireless Systems: Impact and Digital Compensation. Berlin: Springer, 2008

    Book  Google Scholar 

  8. Zhang W C, Ren H, Pan C H, et al. Large-scale antenna systems with UL/DL hardware mismatch: achievable rates analysis and calibration. IEEE Trans Commun, 2015, 63: 1216–1229

    Article  Google Scholar 

  9. Björnson E, Hoydis J, Kountouris M, et al. Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits. IEEE Trans Inform Theory, 2014, 60: 7112–7139

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourdoux A. Non-reciprocal transceivers in OFDM/SDMA systems: impact and mitigation. In: Proceedings of Radio and Wireless Conference, Boston, 2003. 183–186

    Google Scholar 

  11. Guillaud M, Slock D T M, Knopp R. A practical method for wireless channel reciprocity exploitation through relative calibration. In: Proceedings of the 8th International Symposium on Signal Processing and Its Applications, Sydney, 2005. 403–406

    Google Scholar 

  12. Shi J, Luo Q L, You L M. An efficient method for enhancing TDD over the air reciprocity calibration. In: Proceedings of IEEE Wireless Communications and Networking Conference, Cancun, 2011. 339–344

    Google Scholar 

  13. Han S Q, Yang C Y, Wang G, et al. Coordinated multipoint transmission strategies for TDD systems with non-ideal channel reciprocity. IEEE Trans Commun, 2012, 10: 4256–4270

    Google Scholar 

  14. Guillaud M, Kaltenberger F. Towards practical channel reciprocity exploitation: relative calibration in the presence of frequency offset. In: Proceedings of IEEE Wireless Communications and Networking Conference, Shanghai, 2013. 2525–2530

    Google Scholar 

  15. Rogalin R, Bursalioglu O Y, Papadopoulos H, et al. Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Trans Wirel Commun, 2014, 4: 1815–1831

    Article  Google Scholar 

  16. Su L Y, Yang C Y, Wang G, et al. Retrieving channel reciprocity for coordinated multi-point transmission with joint processing. IEEE Trans Commun, 2014, 5: 1541–1553

    Article  Google Scholar 

  17. Shepard C, Yu H, Anand N, et al. Argos: practical many-antenna base stations. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanburl, 2012. 53–64

    Google Scholar 

  18. Kaltenberger F. Relative channel reciprocity calibration in MIMO/TDD systems. In: Proceedings of IEEE Future Network and Mobile Summit, Florence, 2010. 1–10

    Google Scholar 

  19. Yang H, Marzetta T. Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J Sel Area Commun, 2013, 31: 172–179

    Article  Google Scholar 

  20. Peel C B, Hochwald B M, Swindlehurst A L. A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: channel inversion and regularization. IEEE Trans Commun, 2005, 53: 195–202

    Article  Google Scholar 

  21. Joham M, Utschich W, Nossek J A. Linear transmit processing in MIMO communications systems. IEEE Trans Signal Process, 2005, 53: 2700–2712

    Article  MathSciNet  MATH  Google Scholar 

  22. Costa M H M. Writting on dirty paper. IEEE Trans Inform Theory, 1983, 29: 439–441

    Article  MathSciNet  MATH  Google Scholar 

  23. Hochwald B M, Peel C B, Swindlehurst A L. Vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: perturbation. IEEE Trans Commun, 2005, 53: 537–544

    Article  Google Scholar 

  24. Björnson E, Larsson E G, Marzetta T L. Massive MIMO: ten myths and one critical question. IEEE Commun Mag, 2016, 54: 114–123

    Article  Google Scholar 

  25. Wei H, Wang D M, Wang J Z, et al. Impact of RF mismatches on the performance of massive MIMO systems with ZF precoding. Sci China Inf Sci, 2016, 59: 022302

    Google Scholar 

  26. Meng X, Jiang B, Gao X Q. Efficient co-channel interference suppression in MIMO-OFDM systems. Sci China Inf Sci, 2015, 58: 022301

    MATH  Google Scholar 

  27. Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs: Prentice Hall, 1993

    MATH  Google Scholar 

  28. You L, Gao X Q, Xia X-G, et al. Pilot reuse for massive MIMO transmission over spatially correlated rayleigh fading channels. IEEE Trans Wireless Commun, 2015, 14: 3352–3366

    Article  Google Scholar 

  29. Kermoal J P, Schumacher L, Pedersen I K, et al. A stochastic MIMO radio channel model with experimental validation. IEEE Trans Commun, 2002, 20: 1211–1226

    Google Scholar 

  30. Sayeed A M. Deconstructing multiantenna fading channels. IEEE Trans Signal Process, 2002, 50: 2563–2579

    Article  Google Scholar 

  31. Weichselberger W, Herdin M, ¨Ozcelik H, et al. A stochastic MIMO channel model with joint correlation of both link ends. IEEE Trans Wirel Commun, 2006, 5: 90–100

    Article  Google Scholar 

  32. Wagner S, Couillet R, Debbah M, et al. Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback. IEEE Trans Inform Theory, 2012, 58: 4509–4537

    Article  MathSciNet  MATH  Google Scholar 

  33. Hoydis J, Brink S T, Debbah M. Massive MIMO in the UL/DL of celluar networks: how many antennas do we need? IEEE J Sel Areas Commun, 2013, 31: 160–171

    Article  Google Scholar 

  34. Couillet R, Debbah M. Random Matrix Methods for Wireless Communications. Cambridge: Cambridge University Press, 2011

    Book  MATH  Google Scholar 

  35. Silverstein J W, Bai Z D. On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J Multivar Anal, 1995, 54: 175–192

    Article  MathSciNet  MATH  Google Scholar 

  36. Jacks W C, Cox D C. Microwave Mobile Communications. New York: Wiley, 1994

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61320106003, 61471113, 61521061, 61631018), National High Technology Research and Development Program of China (863) (Grant Nos. 2015AA01A701, 2014AA01A704), National Science and Technology Major Project of China (Grant No. 2014ZX03003006-003), and Huawei Cooperation Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiqi Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gao, X., Xia, XG. et al. Robust MMSE precoding for massive MIMO transmission with hardware mismatch. Sci. China Inf. Sci. 61, 042303 (2018). https://doi.org/10.1007/s11432-016-9126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9126-1

Keywords

Navigation