Skip to main content
Log in

A low-complexity ECG processing algorithm based on the Haar wavelet transform for portable health-care devices

基于哈尔小波变换的低复杂度心电信号处理算法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents a simple Electrocardiogram (ECG) processing algorithm for portable healthcare devices. This algorithm consists of the Haar wavelet transform (HWT), the modulus maxima pair detection (MMPD) and the peak position modification (PPM). To lessen the computational complexity, a novel no multiplier structure is introduced to implement HWT. In the MMPD, the HWT coefficient at scale 24 is processed to find candidate peak positions of ECG. The PPM is designed to correct the time shift in digital process and accurately determine the location of peaks. Some new methods are proposed to improve anti-jamming performance in MMPD and PPM. Evaluated by the MIT-BIH arrhythmia database, the sensitivity (Se) of QRS detection is 99.53% and the positive prediction (Pr) of QRS detection is 99.70%. The QT database is chosen to fully validate this algorithm in complete delineation of ECG waveform. The mean µ and standard deviation σ between test results and annotations are calculated. Most of σ satisfies the CSE limits which indicates that the results are stable and reliable. A detailed and rigorous computational complexity analysis is presented in this paper. The number of arithmetic operations in N input samples is chosen as the criterion of complexity. Without any multiplication operations, the number of addition operations is only about 16.33N. This algorithm achieves high detection accuracy and the lower computational complexity.

概要

创新点

本论文提出了一种适用于便携式健康产品的、 低复杂度的心电信号处理算法. 该算法包括哈尔小波变换、 模极大值检测、 峰值修正三部分. 基于哈尔小波等效滤波器系数的特点, 本论文提出了一种新颖的无乘法器结构, 大大降低了算法的计算复杂度. 模极大值检测和峰值修正提高了该算法的抗干扰性能, 改善了检测准确率. 本论文选用MIT心率不齐数据库和QT数据库作为数据源, 对该算法进行了验证, 检测准确率达到了较高水平. 综上, 该算法在改善准确率的同时, 极大地降低了算法复杂度, 非常适合便携式健康产品的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang X, Pei WH, Huang B J, et al. A low-noise fully-differential CMOS preamplifier for neural recording applications. Sci China Inf Sci, 2012, 55: 441–452

    Article  MathSciNet  Google Scholar 

  2. Zhang X, Pei W H, Huang B J, et al. Implantable CMOS neurostimulus chip for visual prosthesis. Sci China Inf Sci, 2011, 54: 898–908

    Article  MathSciNet  Google Scholar 

  3. Zhang X, Liu M, Wang B, et al. A wide measurement range and fast update rate integrated interface for capacitive sensors array. IEEE Trans Circuits Syst I-Regul Pap, 2014, 61: 2–11

    Article  MathSciNet  Google Scholar 

  4. Wang Y, Zhang X, Liu M, et al. An implantable sacral nerve root recording and stimulation system for micturition function restoration. IEICE trans Inf Syst, 2014. In press

    Google Scholar 

  5. Ye Y L, Sheu P C-Y, Zeng J Z, et al. An efficient semi-blind source extraction algorithm and its applications to biomedical signal extraction. Sci China Ser-F: Inf Sci, 2009, 52: 1863–1874

    Article  MATH  Google Scholar 

  6. Wang G, Rao N N, Zhang Y, et al. Atrial fibrillatory signal estimation using blind source extraction algorithm based on high-order statistics. Sci China Ser-F: Inf Sci, 2008, 51: 1572–1584

    Article  MATH  Google Scholar 

  7. An J, Lee J H, Ahn C W. An efficient GP approach to recognizing cognitive tasks from fNIRS neural signals. Sci China Inf Sci, 2013, 56: 109201

    Article  MathSciNet  Google Scholar 

  8. Kohler B U, Hennig C, Orglmeister R. The principles of software QRS detection. IEEE Eng Med Biol Mag, 2002, 21: 42–57

    Article  Google Scholar 

  9. Kleiger R E, Stein P K, Bigger J T. Heart rate variability: measurementand clinical utility. Ann Noninv Electrocardiol, 2005, 10: 88–101

    Article  Google Scholar 

  10. Yue Z, Li S X, Li Y, et al. Adaptive R-wave detection method in dynamic ECG with heavy EMG artifact. In: Proceedings of the IEEE International Conference on Information and Automation, Shenyang, 2012. 83–87

    Google Scholar 

  11. Hyejung K, Yazicioglu R F, Merken P, et al. ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans Inf Technol Biomed, 2010, 14: 93–100

    Article  Google Scholar 

  12. Li C W, Zheng C X, Tai C F. Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng, 1995, 42: 21–28

    Article  Google Scholar 

  13. Zhang F, Lian Y. QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks. IEEE Trans Biomed Circuits Syst, 2009, 3: 220–228

    Article  Google Scholar 

  14. Dokur Z, Olmez T, Yazgan E. ECG waveform classification using the neural network and wavelet transform. In: Proceedings of the IEEE International Conference on Medicine and Biology, Atlanta, 1999. 273–273

    Google Scholar 

  15. Szilágyi S, Szilágyi L. Wavelet transform and neural-network basedadaptive filtering for QRS detection. In: Proceedings of the IEEE International Conference on Medicine and Biology, Chicago, 2000. 1267–1270

    Google Scholar 

  16. Andre R V A, Boudy J. Combining wavelet transform and hidden Markov models for ECG segmentation. EURASIP J Appl Signal Process, 2007, 2007: 056215

    Article  Google Scholar 

  17. Mallat S. A Wavelet Tour of Signal Processing. New York: Academic, 2009. 102–115

    MATH  Google Scholar 

  18. Cohen A, Kovačević J. Wavelets: the mathematical background. Proc IEEE, 1996, 84: 514–522

    Article  Google Scholar 

  19. Martinez J P, Almeida R, Olmos S, et al. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng, 2004, 51: 570–581

    Article  Google Scholar 

  20. Chio-In I, Pui-In M, Chi-Pang L, et al. A 0.83-μW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-μm CMOS. IEEE Trans Biomed Circuits Syst, 2012, 6: 586–595

    Article  Google Scholar 

  21. Mazomenos E B, Biswas D, Acharyya A, et al. A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J Biomed Health Inf, 2013, 17: 459–469

    Article  Google Scholar 

  22. Laguna P, Mark R G, Goldberg A, et al. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. In: Proceedings of the IEEE International Conference in Computers on Cardiology, Lund, 1997. 673–676

    Google Scholar 

  23. Ravanshad N, Rezaee-Dehsorkh H, Lotfi R, et al. A level-crossing-based QRS-detection algorithm for wearable ECG sensors. IEEE J Biomed Health Inf, 2013, 18: 183–192

    Article  Google Scholar 

  24. Wang H M, Lai Y L, Hou M C, et al. A 6 ms-accuracy, 0.68 mm2 and 2.21 ?W QRS detection ASIC. In: Proceedings of the IEEE International Conference on Circuits and Systems, Pairs, 2010. 1372–1375

    Google Scholar 

  25. Willems J L. Recomendations for measurement standards in quantitative electrocardiography. Eur Heart J, 1985, 6: 815–825

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Liu or Xu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Liu, M., Zhang, X. et al. A low-complexity ECG processing algorithm based on the Haar wavelet transform for portable health-care devices. Sci. China Inf. Sci. 57, 1–14 (2014). https://doi.org/10.1007/s11432-014-5199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5199-0

Keywords

关键词

Navigation