Skip to main content
Log in

Salient structural elements based texture synthesis

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Salient structural elements are ubiquitous in natural textures, and their distribution exhibits some stochastic distribution features. Current texture synthesis algorithms can neither preserve the integrity of the elements nor capture this distributive information. We present an algorithm to treat this high-level visual information. Here, we address the issue by taking specific care of the structural elements. Our texture synthesis process grows the target texture one structural element at a time. A Markov random field model is assumed for the distribution of the salient structural elements. In the analysis process, the salient structural elements are first extracted, and their topological relationship is constructed. Next, in the synthesis process, to identify an unknown element with neighbors synthesized, we query the sample texture and find the most similar neighbor. The randomness of the target texture can be improved by randomly transforming the structural elements. Experimentation shows that our results pass scrutiny by the high-level visual processing of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intell, 1998, 20: 1254–1259

    Article  Google Scholar 

  2. Palmer S. Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press, 1999

    Google Scholar 

  3. Kwatra V, Schödl A, Essa I, et al. Graphcut textures: image and video synthesis using graph cuts. In: Proceedings of ACM SIGGRAPH 2003. New York: ACM Press, 2003. 277–286

    Chapter  Google Scholar 

  4. Witkin A, Kass M. Reaction-diffusion textures. Comput Graph, 1991, 25: 299–308

    Article  Google Scholar 

  5. Worley S P. A cellular texture basis function. In: Proceedings of ACM SIGGRAPH 1996. New York: ACM Press, 1996. 291–294

    Google Scholar 

  6. Dorsey J, Edelman A, Legakis J, et al. Modeling and rendering of weathered stone. In: Proceedings of ACM SIGGRAPH 1999. York: ACM Press, 1999. 225–234

    Google Scholar 

  7. Zhu S C, Wu Y, Mumford D. Filters, random fields and maximum entropy (frame). Int J Comput Vision, 1998, 27: 1–20

    Article  Google Scholar 

  8. Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In: Proceedings of ICCV 1999. Washington D C: IEEE Computer Society Press, 1999. 1033–1038

    Google Scholar 

  9. Wei L Y, Levoy M. Fast texture synthesis using tree-structured vector quantization. In: Proceedings of ACM SIGGRAPH 2000. New York: ACM Press, 2000. 479–488

    Google Scholar 

  10. Lefebvre S, Hoppe H. Parallel controllable texture synthesis. ACM Trans Graph, 2005, 24: 777–786

    Article  Google Scholar 

  11. Michael A. Synthesizing natural textures. In: Symposium on Interactive 3D Graphics. New York: ACM Press, 2001. 217–226

    Google Scholar 

  12. Wu Q, Yu Y Z. Feature matching and deformation for texture synthesis. In: Proceedings of ACM SIGGRAPH 2004. New York: ACM Press, 2004. 364–367

    Chapter  Google Scholar 

  13. Lefebvre S, Hoppe H. Appearance-space texture synthesis. In: Proceedings of ACM SIGGRAPH 2006. New York: ACM Press, 2006. 541–548

    Chapter  Google Scholar 

  14. Efros A A, Freeman W T. Image quilting for texture synthesis and transfer. In: Proceedings of ACM SIGGRAPH 2001. New York: ACM Press, 2001. 341–346

    Google Scholar 

  15. Zhang J, Zhou K, Velho L, et al. Synthesis of progressively-variant textures on arbitrary surfaces. ACM Trans Graph, 2003, 22: 295–302

    Article  Google Scholar 

  16. Liu Y, Lin W C, Hays J. Near-regular texture analysis and manipulation. ACM Trans Graph, 2004, 23: 368–376

    Article  Google Scholar 

  17. Dischler J M, Maritaud K, Levoy B, et al. Texture particles. In: Proceedings of EUROGRAPHICS 2002. Aire-la-Ville: Eurographics Association Press, 2002. 401–410

    Google Scholar 

  18. Shen J B, Jin X G, Mao X Y, et al. Completion-based textures design using deformation. Visual Comput, 2006, 22: 936–945

    Article  Google Scholar 

  19. Hertzmann A, Jacobs C E, Oliver N, et al. Image analogies. In: Proceedings of ACM SIGGRAPH 2001. New York: ACM Press, 2001. 327–340

    Google Scholar 

  20. Kwatra V, Essa I, Bobick A, et al. Texture optimization for example-based synthesis. In: Proceedings of ACM SIGGRAPH 2005. New York: ACM Press, 2005. 795–802

    Chapter  Google Scholar 

  21. Wei L Y, Han J W, Zhou K, et al. Inverse texture Synthesis. ACM Trans Graph, 2008, 27: 1–9

    Google Scholar 

  22. Telea A. An image inpainting technique based on the fast marching method. J Graph Tools, 2004, 9: 23–24

    Google Scholar 

  23. Cheng M M, Zhang F L, Mitra N J, et al. RepFinder: Finding approximately repeated scene elements for image editing. ACM Trans Graph, 2010, 29: 1–8

    Article  Google Scholar 

  24. Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience, 1991

    Book  MATH  Google Scholar 

  25. Deussen O, Hanrahan P, Pharr M, et al. Realistic modeling and rendering of plant ecosystems. In: Proceedings of SIGGRAPH 1998. New York: ACM Press, 1998. 275–286

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, B., Zhong, F., Wang, S. et al. Salient structural elements based texture synthesis. Sci. China Inf. Sci. 54, 1199–1206 (2011). https://doi.org/10.1007/s11432-011-4246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4246-3

Keywords

Navigation