Skip to main content
Log in

Optical transparent metamaterial structure for microwave–infrared-compatible camouflage based on indium tin oxide

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A visible transparent metamaterial absorber was designed and fabricated with ultrabroadband microwave absorption and low infrared emissivity to meet the increasing demand for multispectral compatible camouflage. The absorber was fabricated with a low-infrared emissive layer at the top, a microwave-absorbing layer in the middle, and a reflective layer at the bottom, which were separated by polymethyl methacrylate plates. The absorber showed an average visible transmittance of 55%, infrared emissivity of ∼0.37, and effective microwave absorption bandwidth of 32.1 GHz with a total thickness of 3.0 mm. Furthermore, microwave absorption exhibited wide-angle stability and polarization insensitivity characteristics. The mechanism of microwave attenuation was further explored through effective electromagnetic parameters as well as surface current, electric field, magnetic field, and energy loss density distributions. The experimental results were consistent with those of the simulations and calculations, indicating the potential of the designed metamaterial absorber for future applications in multispectral compatible camouflage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li D, Chen Q, Huang J, et al. Scalable-manufactured metamaterials for simultaneous visible transmission, infrared reflection, and microwave absorption. ACS Appl Mater Interfaces, 2022, 14: 33933–33943

    Article  Google Scholar 

  2. Feng X, Pu M, Zhang F, et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv Funct Mater, 2022, 32: 2205547

    Article  Google Scholar 

  3. Shrestha S, Wang Y, Overvig A C, et al. Indium tin oxide broadband metasurface absorber. ACS Photonics, 2018, 5: 3526–3533

    Article  Google Scholar 

  4. Chen W, Zhan J, Zhou Y, et al. Microwave metamaterial absorbers with controllable luminescence features. ACS Appl Mater Interfaces, 2021, 13: 54497–54502

    Article  Google Scholar 

  5. Du Z, Liang J, Cai T, et al. Designing an ultra-thin and wideband low-frequency absorber based on lumped resistance. Opt Express, 2022, 30: 914–925

    Article  Google Scholar 

  6. Sheokand H, Singh G, Ghosh S, et al. An optically transparent broadband microwave absorber using interdigital capacitance. Antennas Wirel Propag Lett, 2019, 18: 113–117

    Article  Google Scholar 

  7. Xu C, Wang B, Yan M, et al. An optical-transparent metamaterial for high-efficiency microwave absorption and low infrared emission. J Phys D-Appl Phys, 2020, 53: 135109

    Article  Google Scholar 

  8. Shi M, Xu C, Yang Z, et al. Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating. J Alloys Compd, 2018, 764: 314–322

    Article  Google Scholar 

  9. Gao Z, Xu C, Tian X, et al. Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity. Opt Express, 2021, 29: 22108–22116

    Article  Google Scholar 

  10. Gao Z, Xu C, Tian X, et al. Multifunctional ultra-thin metasurface with low infrared emissivity, microwave absorption and high optical transmission. Optics Commun, 2021, 500: 127327

    Article  Google Scholar 

  11. Yuan Q, Jiang J, Li Y, et al. The compatible method of designing the transparent ultra-broadband radar absorber with low infrared emissivity. Infrared Phys Tech, 2022, 123: 104114

    Article  Google Scholar 

  12. Xu C, Qu S, Wang J, et al. A reflective-backing-free metamaterial absorber with broadband response. J Adv Dielect, 2017, 07: 1750016

    Article  Google Scholar 

  13. Kim J, Han K, Hahn J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci Rep, 2017, 7: 6740

    Article  Google Scholar 

  14. Xu C, Qu S, Pang Y, et al. Metamaterial absorber for frequency selective thermal radiation. Infrared Phys Tech, 2018, 88: 133–138

    Article  Google Scholar 

  15. Yang C, Chang H, Xiao L, et al. Visible and NIR transparent broadband microwave absorption metamaterial based on silver nanowires. Optical Mater, 2022, 131: 112464

    Article  Google Scholar 

  16. Xiong Y, Chen F, Cheng Y, et al. Rational design and fabrication of optically transparent broadband microwave absorber with multilayer structure based on indium tin oxide. J Alloys Compd, 2022, 920: 166008

    Article  Google Scholar 

  17. Ma L, Xu H, Lu Z, et al. Optically transparent broadband microwave absorber by graphene and metallic rings. ACS Appl Mater Interfaces, 2022, 14: 17727–17738

    Article  Google Scholar 

  18. Lu W B, Wang J W, Zhang J, et al. Flexible and optically transparent microwave absorber with wide bandwidth based on graphene. Carbon, 2019, 152: 70–76

    Article  Google Scholar 

  19. Dong Y, Yu D, Li G, et al. Ultrathin and optically transparent microwave absorber based on flexible silver nanowire film. Crystals, 2021, 11: 1583

    Article  Google Scholar 

  20. Jiang H, Yang W, Lei S, et al. Transparent and ultra-wideband metamaterial absorber using coupled hexagonal combined elements. Opt Express, 2021, 29: 29439

    Article  Google Scholar 

  21. Meng Z, Tian C, Xu C, et al. Multi-spectral functional metasurface simultaneously with visible transparency, low infrared emissivity and wideband microwave absorption. Infrared Phys Tech, 2020, 110: 103469

    Article  Google Scholar 

  22. Xu C, Wang B, Pang Y, et al. Hybrid metasurfaces for infrared-multiband radar stealth-compatible materials applications. IEEE Access, 2019, 7: 147586–147595

    Article  Google Scholar 

  23. West P R, Ishii S, Naik G V, et al. Searching for better plasmonic materials. Laser Photon Rev, 2010, 4: 795–808

    Article  Google Scholar 

  24. Min P, Song Z, Yang L, et al. Multispectral meta-film design: Simultaneous realization of wideband microwave absorption, low infrared emissivity, and visible transparency. Opt Express, 2022, 30: 32317–32332

    Article  Google Scholar 

  25. Zhang Y, Dong H, Mou N, et al. Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications. Nanoscale, 2021, 13: 7831–7837

    Article  Google Scholar 

  26. Zhu B, Wang Z B, Yu Z Z, et al. Planar metamaterial microwave absorber for all wave polarizations. Chin Phys Lett, 2009, 26: 114102

    Article  Google Scholar 

  27. Tao H, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Phys Rev B, 2008, 78: 241103

    Article  Google Scholar 

  28. Cui J, Wan Y, Cui Y, et al. Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide. Appl Phys Lett, 2017, 110: 143511

    Article  Google Scholar 

  29. Zheng Y, Chen K, Jiang T, et al. Multi-octave microwave absorption via conformal metamaterial absorber with optical transparency. J Phys D-Appl Phys, 2019, 52: 335101

    Article  Google Scholar 

  30. Ran Y, Shi L, Ma Y, et al. Optically transparent microwave scattering reduction metasurface with tunable infrared radiation. Optical Mater, 2021, 114: 110911

    Article  Google Scholar 

  31. Zhao J, Zhang C, Cheng Q, et al. An optically transparent metasurface for broadband microwave antireflection. Appl Phys Lett, 2018, 112: 073504

    Article  Google Scholar 

  32. Meng Z, Tian C, Xu C, et al. Optically transparent coding metasurface with simultaneously low infrared emissivity and microwave scattering reduction. Opt Express, 2020, 28: 27774

    Article  Google Scholar 

  33. Min P, Song Z, Yang L, et al. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt Express, 2020, 28: 19518

    Article  Google Scholar 

  34. Zhang L, Shi Y, Yang J X, et al. Broadband transparent absorber based on indium tin oxide-polyethylene terephthalate film. IEEE Access, 2019, 7: 137848–137855

    Article  Google Scholar 

  35. Zhang C, Wu X, Huang C, et al. Flexible and transparent microwave-infrared bistealth structure. Adv Mater Technol, 2019, 4: 1900063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Luo or Fu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Xiong, Y., Cheng, Y. et al. Optical transparent metamaterial structure for microwave–infrared-compatible camouflage based on indium tin oxide. Sci. China Technol. Sci. 66, 2850–2861 (2023). https://doi.org/10.1007/s11431-023-2450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2450-0

Navigation