Skip to main content
Log in

On hp refinements of independent cover numerical manifold method—some strategies and observations

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, strategies are provided for a powerful numerical manifold method (NMM) with h and p refinement in analyses of elasticity and elasto-plasticity. The new NMM is based on the concept of the independent cover, which gets rid of NMM’s important defect of rank deficiency when using higher-order local approximation functions. Several techniques are presented. In terms of mesh generation, a relationship between the quadtree structure and the mathematical mesh is established to allow a robust h-refinement. As to the condition number, a scaling based on the physical patch is much better than the classical scaling based on the mathematical patch; an overlapping width of 1%–10% can ensure a good condition number for 2nd, 3rd, and 4th order local approximation functions; the small element issue can be overcome after the local approximation on small patch is replaced by that on a regular patch. On numerical accuracy, local approximation using complete polynomials is necessary for the optimal convergence rate. Two issues that may damage the convergence rate should be prevented. The first is to approximate the curved boundary of a higher-order element by overly few straight lines, and the second is excessive overlapping width. Finally, several refinement strategies are verified by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma G W, An X M, Zhang H H, et al. Modeling complex crack problems using the numerical manifold method. Int J Fract, 2009, 156: 21–35

    Article  MATH  Google Scholar 

  2. Ma G, An X, He L. The numerical manifold method: A review. Int J Comput Methods, 2010, 07: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  3. Zheng H, Liu Z, Ge X. Numerical manifold space of Hermitian form and application to Kirchhoff’s thin plate problems. Int J Numer Meth Eng, 2013, 95: 721–739

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu Z, Zhang Y, Jiang Y, et al. Unfitted finite element method for fully coupled poroelasticity with stabilization. Comput Methods Appl Mech Eng, 2022, 397: 115132

    Article  MathSciNet  MATH  Google Scholar 

  5. Wei W, Jiang Q, Peng J. New rock bolt model and numerical implementation in numerical manifold method. Int J Geomech, 2017, 17: E4016004

    Article  Google Scholar 

  6. Wong L N Y, Wu Z. Application of the numerical manifold method to model progressive failure in rock slopes. Eng Fract Mech, 2014, 119: 1–20

    Article  Google Scholar 

  7. An X, Ning Y, Ma G, et al. Modeling progressive failures in rock slopes with non-persistent joints using the numerical manifold method. Int J Numer Anal Meth Geomech, 2014, 38: 679–701

    Article  Google Scholar 

  8. Shi G H. Manifold method of material analysis. Report, Army Research Office Research Triangle Park NC, Minnesota. 1992

    Google Scholar 

  9. Shi G H. Modeling rock joints and blocks by manifold method. In: Proceedings of the 33rd US Symposium on Rock Mechanics (USRMS). Santa Fe, 1992

  10. Yang Y, Tang X, Zheng H, et al. Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem, 2016, 72: 65–77

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang Y T, Xu D D, Sun G H, et al. Modeling complex crack problems using the three-node triangular element fitted to numerical manifold method with continuous nodal stress. Sci China Tech Sci, 2017, 60: 1537–1547

    Article  Google Scholar 

  12. Zheng H, Xu D. New strategies for some issues of numerical manifold method in simulation of crack propagation. Int J Numer Meth Eng, 2014, 97: 986–1010

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan Z, Zheng H, Lin S. Shear band static evolution by spatially mobilized plane criterion based Drucker-Prager model and numerical manifold method. Comput Geotech, 2021, 132: 103962

    Article  Google Scholar 

  14. Wu Z, Wong L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech, 2012, 39: 38–53

    Article  Google Scholar 

  15. Yang Y, Xu D, Liu F, et al. Modeling the entire progressive failure process of rock slopes using a strength-based criterion. Comput Geotech, 2020, 126: 103726

    Article  Google Scholar 

  16. Chen G, Ohnishi Y, Ito T. Development of high-order manifold method. Int J Numer Meth Eng, 1998, 43: 685–712

    Article  MATH  Google Scholar 

  17. Zheng H, Wang F. The numerical manifold method for exterior problems. Comput Methods Appl Mech Eng, 2020, 364: 112968

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang Y, Tang X, Zheng H. A three-node triangular element with continuous nodal stress. Comput Struct, 2014, 141: 46–58

    Article  Google Scholar 

  19. Liu Z, Zhang P, Sun C, et al. Two-dimensional Hermitian numerical manifold method. Comput Struct, 2020, 229: 106178

    Article  Google Scholar 

  20. Liu Z, Zhang P, Sun C, et al. Smoothed numerical manifold method with physical patch-based smoothing domains for linear elasticity. Int J Numer Methods Eng, 2021, 122: 515–547

    Article  MathSciNet  Google Scholar 

  21. Malekzadeh M, Hamzehei-Javaran S, Shojaee S. Novel insight into high-order numerical manifold method using complex Fourier element shape functions in statics and dynamics. Int J Appl Mech, 2019, 11: 1950058

    Article  Google Scholar 

  22. Cheng Y M, Zhang Y H. Formulation of a three-dimensional numerical manifold method with tetrahedron and hexahedron elements. Rock Mech Rock Eng, 2007, 41: 601–628

    Article  Google Scholar 

  23. He L, An X M, Zhao Z Y. Development of contact algorithm for three-dimensional numerical manifold method. Int J Numer Meth Eng, 2014, 97: 423–453

    Article  MATH  Google Scholar 

  24. Jiang Q, Zhou C, Li D. A three-dimensional numerical manifold method based on tetrahedral meshes. Comput Struct, 2009, 87: 880–889

    Article  Google Scholar 

  25. Shi G H. Contact theory. Sci China Tech Sci, 2015, 58: 1450–1496

    Article  Google Scholar 

  26. Shi G H. Contact theory and algorithm. Sci China Tech Sci, 2021, 64: 1775–1790

    Article  Google Scholar 

  27. Tian R, Yagawa G, Terasaka H. Linear dependence problems of partition of unity-based generalized FEMs. Comput Methods Appl Mech Eng, 2006, 195: 4768–4782

    Article  MathSciNet  MATH  Google Scholar 

  28. Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng, 2000, 181: 43–69

    Article  MathSciNet  MATH  Google Scholar 

  29. Babuska I, Melenk J M. The partition of unity method. Int J Numer Meth Eng, 1997, 40: 727–758

    Article  MathSciNet  MATH  Google Scholar 

  30. Li S, Cheng Y, Wu Y F. Numerical manifold method based on the method of weighted residuals. Comput Mech, 2005, 35: 470–480

    Article  MATH  Google Scholar 

  31. He L, An X, Liu X, et al. Augmented numerical manifold method with implementation of flat-top partition of unity. Eng Anal Bound Elem, 2015, 61: 153–171

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang N, Li X, Zheng H, et al. Some displacement boundary inaccuracies in numerical manifold method and treatments. J Eng Mech, 2021, 147: 04021105

    Google Scholar 

  33. Liu Z J, Zheng H. Two-dimensional numerical manifold method with multilayer covers. Sci China Tech Sci, 2016, 59: 515–530

    Article  Google Scholar 

  34. Liu Z, Zheng H. Local refinement with arbitrary irregular meshes and implementation in numerical manifold method. Eng Anal Bound Elem, 2021, 132: 231–247

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu C Y, Liu F, Xu Y. An h-adaptive numerical manifold method for solid mechanics problems. Sci China Tech Sci, 2018, 61: 923–933

    Article  Google Scholar 

  36. Su H D, Qi Y F, Gong Y Q, et al. Preliminary research of numerical manifold method based on partly overlapping rectangular covers. In: Proceedings of the 11th International Conference on Analysis of Discontinuous Deformation (ICADD11). Fukuoka, 2013

  37. Su H D. Application prospect of manifold method based on independent covers in hydraulic structure analysis (in Chinese). J Yangtze River Sci Res Inst, 2019, 36: 1–8

    Google Scholar 

  38. Su H D, Xie Z Q, Gong Y Q, et al. Characteristics of convergence and cover mesh in numerical manifold method based on independent covers (in Chinese). J Yangtze River Sci Res Inst, 2016, 33: 131–136

    Google Scholar 

  39. Wu Q, Peng P P, Cheng Y M. The interpolating element-free Galerkin method for elastic large deformation problems. Sci China Tech Sci, 2021, 64: 364–374

    Article  Google Scholar 

  40. Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. Int J Numer Meth Eng, 1994, 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  41. An X M, Li L X, Ma G W, et al. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes. Comput Methods Appl Mech Eng, 2011, 200: 665–674

    Article  MathSciNet  MATH  Google Scholar 

  42. Zheng H, Yang Y, Shi G. Reformulation of dynamic crack propagation using the numerical manifold method. Eng Anal Bound Elem, 2019, 105: 279–295

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng H, Liu F, Li C. The MLS-based numerical manifold method with applications to crack analysis. Int J Fract, 2014, 190: 147–166

    Article  Google Scholar 

  44. Zienkiewicz O C, Taylor R L, Fox D D. The Finite Element Method for Solid and Structural Mechanics. Singapore: Elsevier, 2015

    MATH  Google Scholar 

  45. Zhang N, Li X, Wang D. Smoothed classic yield function for C2 continuities in tensile cutoff, compressive cap, and deviatoric sections. Int J Geomech, 2021, 21: 04021005

    Article  Google Scholar 

  46. Kim J, Bathe K J. The finite element method enriched by interpolation covers. Comput Struct, 2013, 116: 35–49

    Article  Google Scholar 

  47. Liu G R, Nguyen T T. Smoothed Finite Element Methods. Boca Raton: CRC Press, 2016. 170

    Book  Google Scholar 

  48. Su H D, Fu Z, Xie Z Q. Numerical computations based on cover meshes with arbitrary shapes and on exactly geometric boundaries (in Chinese). J Yangtze River Sci Res Inst, 2020, 37: 167–174

    Google Scholar 

  49. Zhang Y L, Liu D X, Tan F. Numerical manifold method based on isogeometric analysis. Sci China Tech Sci, 2015, 58: 1520–1532

    Article  Google Scholar 

  50. Cottrell J A, Hughes T J, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. New York: John Wiley & Sons, 2009

    Book  MATH  Google Scholar 

  51. Donald I B, Giam P S K. The ACADS slope stability programs review. In: Proceedings of the 6th International Symposium on Landslides. Rotterdam, 1992

  52. Zheng H, Liu D F, Li C G. Slope stability analysis based on elasto-plastic finite element method. Int J Numer Meth Eng, 2005, 64: 1871–1888

    Article  MathSciNet  MATH  Google Scholar 

  53. Yao Y P, Hou W, Zhou A N. UH model: Three-dimensional unified hardening model for overconsolidated clays. Géotechnique, 2009, 59: 451–469

    Article  Google Scholar 

  54. Lu D C, Miao J B, Du X L, et al. A new method of developing elastic-plastic-viscous constitutive model for clays. Sci China Tech Sci, 2020, 63: 303–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52130905 and 52079002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zheng, H., Li, X. et al. On hp refinements of independent cover numerical manifold method—some strategies and observations. Sci. China Technol. Sci. 66, 1335–1351 (2023). https://doi.org/10.1007/s11431-022-2221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2221-5

Keywords

Navigation