Skip to main content
Log in

Uncertain eigenvalue analysis of the dielectric-filled waveguide by an interval vector finite element method

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Eigenvalues of the dielectric-filled waveguide are of great importance to its transmission characteristic analysis and optimization design, which could be easily affected by spatially uncertain dielectric parameters. For the sake of quantifying their influence on eigenvalues of the dielectric-filled waveguide and overcoming the limitation of less samples, an interval vector finite element method (IVFEM) is proposed to acquire the lower and upper bounds of the eigenvalues with spatial uncertainty of the medium parameters Firstly, the uncertain dielectric material properties are described by the interval field model and the corresponding interval Karhunen-Loève (K-L) approximate method. Secondly, by inserting the interval uncertainties into the constitutive relationship of the standard generalized eigenvalue equations of the dielectric-filled waveguide, an interval standard generalized eigenvalue equation is then formulated. At last, the lower and upper bounds of the eigenvalues are calculated according to the first-order perturbation method, which can be used to estimate the transmission properties of the waveguide efficiently. Three kinds of the dielectric-filled waveguides are analyzed by the proposed IVFEM and verified by Monte Carlo simulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Higgins J A, Xin H, Sailer A, et al. Ka-band waveguide phase shifter using tunable electromagnetic crystal sidewalls. IEEE Trans Microw Theory Technol, 2003, 51: 1281–1288

    Article  Google Scholar 

  2. Mao S G, Chueh Y Z. Coplanar waveguide bandpass filters with compact size and wide spurious-free stopband using electromagnetic bandgap resonators. IEEE Microw Wireless Compon Lett, 2007, 17: 181–183

    Article  Google Scholar 

  3. Smirnov Y G, Valovik D V. Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity. Phys Rev A, 2015, 91: 013840

    Article  MathSciNet  Google Scholar 

  4. Liu J, Tao L. Influence of parametric uncertainties on narrow width bandpass optical filter of prism pair coupled planar optical waveguide. IEEE J Quantum Electron, 2017, 53: 1–5

    Article  Google Scholar 

  5. Leinhos J, Arz U. Effect of uncertainties in the cross-sectional parameters on the wideband electrical properties of coplanar waveguides. In: Proceedings of IEEE Workshop on Signal Propagation on Interconnects. Genova, 2007. 35–38

  6. Kuhlmann K, Arz U. Comparison of different methods for calculating uncertainties in the electrical properties of planar waveguides. In: Proceedings of the 77th ARFTG Microwave Measurement Conference. Baltimore, 2011. 1–5

  7. Jargon J A, Arz U, Williams D F. Characterizing WR-8 waveguide-to-CPW probes using two methods implemented within the NIST Uncertainty Framework. In: Proceedings of the 80th ARFTG Microwave Measurement Conference. San Diego, 2012. 1–5

  8. Harrington T E, Bronaugh E L. EUT directivity and other uncertainty considerations for GHz-range use of TEM waveguides. In: Proceedings of International Symposium on Electromagnetic Compatibility. Montreal, 2001, 1: 117–122

    Google Scholar 

  9. Savin A A, Guba V G, Bykova O N. Uncertainty analysis in coplanar waveguide with unscented transformation. In: Proceedings of the 86th ARFTG Microwave Measurement Conference. Atlanta, 2015. 1–4

  10. Beddek K, Menach Y L, Clenet S, et al. 3-D stochastic spectral finite-element method in static electromagnetism using vector potential formulation. IEEE Trans Magn, 2011, 47: 1250–1253

    Article  Google Scholar 

  11. Gaignaire R, Clenet S, Sudret B, et al. 3-D spectral stochastic finite element method in electromagnetism. IEEE Trans Magn, 2007, 43: 1209–1212

    Article  Google Scholar 

  12. Hemanth G, Vinoy K J, Gopalakrishnan S. Spectral stochastic finite element method for periodic structure. In: Proceedings of IEEE International Microwave and RF Conference (IMaRC). Bangalore, 2014. 9–12

  13. Lehikoinen A. Spectral stochastic finite element method for electromagnetic problems with random geometry. Electrical Control Commun Eng, 2014, 6: 5–12

    Article  Google Scholar 

  14. Wang Z H, Shen X W, Jiang C, et al. An electromagnetic stochastic finite element method for Helmholtz-type wave propagation analysis. IEEE Trans Electromagn Compat, 2020, 62: 1136–1150

    Article  Google Scholar 

  15. Wang Z H, Jiang C, Ni B Y, et al. An interval finite element method for electromagnetic problems with spatially uncertain parameters. Sci China Tech Sci, 2020, 63: 25–43

    Article  Google Scholar 

  16. Moens D, De Munck M, Desmet W, et al. Numerical dynamic analysis of uncertain mechanical structures based on interval fields. In: IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties. Dordrecht: Springer, 2011. 71–83

    Google Scholar 

  17. Muscolino G, Sofi A, Zingales M. One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis. Comput Struct, 2013, 122: 217–229

    Article  Google Scholar 

  18. Luo Y J, Zhan J J, Xing J, et al. Non-probabilistic uncertainty quantification and response analysis of structures with a bounded field model. Comput Methods Appl Mech Eng, 2019, 347: 663–678

    Article  MathSciNet  MATH  Google Scholar 

  19. Verhaeghe W, Desmet W, Vandepitte D, et al. Interval fields to represent uncertainty on the output side of a static FE analysis. Comput Methods Appl Mech Eng, 2013, 260: 50–62

    Article  MathSciNet  MATH  Google Scholar 

  20. Faes M, Cerneels J, Vandepitte D, et al. Identification and quantification of multivariate interval uncertainty in finite element models. Comput Methods Appl Mech Eng, 2017, 315: 896–920

    Article  MathSciNet  MATH  Google Scholar 

  21. Faes M, Cerneels J, Vandepitte D, et al. Influence of measurement data metrics on the identification of interval fields for the representation of spatial variability in finite element models. Proc Appl Math Mech, 2016, 16: 27–30

    Article  Google Scholar 

  22. Sofi A, Muscolino G. Static analysis of Euler-Bernoulli beams with interval Young’s modulus. Comput Struct, 2015, 156: 72–82

    Article  Google Scholar 

  23. Sofi A, Muscolino G, Elishakoff I. Static response bounds of Timoshenko beams with spatially varying interval uncertainties. Acta Mech, 2015, 226: 3737–3748

    Article  MathSciNet  MATH  Google Scholar 

  24. Sofi A, Romeo E, Barrera O, et al. An interval finite element method for the analysis of structures with spatially varying uncertainties. Adv Eng Software, 2019, 128: 1–19

    Article  Google Scholar 

  25. Ni B Y, Jiang C. Interval field model and interval finite element analysis. Comput Methods Appl Mech Eng, 2020, 360: 112713

    Article  MathSciNet  MATH  Google Scholar 

  26. Ni B Y, Wu P G, Li J Y, et al. A semi-analytical interval method for response bounds analysis of structures with spatially uncertain loads. Finite Elem Anal Des, 2020, 182: 103483

    Article  MathSciNet  Google Scholar 

  27. Jin J M. The Finite Element Method in Electromagnetics. Piscataway: Wiley-IEEE Press, 2002. 1–163

    Google Scholar 

  28. Jin J M. Theory and Computation of Electromagnetic Field. Hoboken: John Wiley & Sons, 2011. 342–372

    Google Scholar 

  29. Greenwood A D, Jin J-M. Finite-element analysis of complex axisymmetric radiating structures. IEEE Trans Antenn Propag, 1999, 47: 1260–1266

    Article  Google Scholar 

  30. Lee J F, Sun D K, Cendes Z J. Full-wave analysis of dielectric waveguides using tangential vector finite elements. IEEE Trans Microw Theory Technol, 1991, 39: 1262–1271

    Article  Google Scholar 

  31. Bardi I, Biro O. An efficient finite-element formulation without spurious modes for anisotropic waveguides. IEEE Trans Microw Theory Technol, 1991, 39: 1133–1139

    Article  Google Scholar 

  32. Alam M S, Hirayama K, Hayashi Y, et al. Analysis of shielded microstrip lines with arbitrary metallization cross section using a vector finite element method. IEEE Trans Microw Theory Technol, 1994, 42: 2112–2117

    Article  Google Scholar 

  33. Sheng X Q, Xu S J. An efficient high-order mixed-edge rectangular-element method for lossy anisotropic dielectric waveguides. IEEE Trans Microw Theory Technol, 1997, 45: 1009–1013

    Article  Google Scholar 

  34. Sheng X Q, Peng Z. Novel high-performance element in the electromagnetic finite-element method—Node-edge element. J Syst Eng Electron, 2008, 19: 878–881

    Article  MATH  Google Scholar 

  35. Sudret B, Kiureghian A D. Stochastic finite element methods and reliability: A state-of-the-art report. University of California. Technical Report UCB/SEMM-2000/08. 2000

  36. Jiang C, Ni B Y, Han X, et al. Non-probabilistic convex model process: A new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput Methods Appl Mech Eng, 2014, 268: 656–676

    Article  MathSciNet  MATH  Google Scholar 

  37. Jiang C, Han X, Lu G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput Methods Appl Mech Eng, 2011, 200: 2528–2546

    Article  MATH  Google Scholar 

  38. Kleiber M, Hien T D. The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Chichester: Wiley, 1992

    MATH  Google Scholar 

  39. Zhu W Q, Wu W Q. A stochastic finite element method for real eigenvalue problems. Probab Eng Mech, 1991, 6: 228–232

    Article  Google Scholar 

  40. Khodaparast H H, Mottershead J E, Friswell M I. Perturbation methods for the estimation of parameter variability in stochastic model updating. Mech Syst Signal Processing, 2008, 22: 1751–1773

    Article  Google Scholar 

  41. Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. AIAA J, 1968, 6: 2426–2429

    Article  MATH  Google Scholar 

  42. Chen N, Yu D J, Xia B Z, et al. Hybrid uncertain analysis for exterior acoustic field prediction with interval random parameters. Int J Comput Methods, 2018, 15: 1850006

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang L, Xiong C, Wang X J, et al. A dimension-wise method and its improvement for multidisciplinary interval uncertainty analysis. Appl Math Model, 2018, 59: 680–695

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang L, Xiong C, Hu J X, et al. Sequential multidisciplinary design optimization and reliability analysis under interval uncertainty. Aerospace Sci Tech, 2018, 80: 508–519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Jiang.

Additional information

This work was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51725502), the National Natural Science Foundation of China (Grant No. 11802089), and the National Defense Fundamental Research Foundation of China (Grant No. JCKY2020110C105).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jiang, C., Ni, B. et al. Uncertain eigenvalue analysis of the dielectric-filled waveguide by an interval vector finite element method. Sci. China Technol. Sci. 65, 336–346 (2022). https://doi.org/10.1007/s11431-021-1940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1940-y

Navigation