Skip to main content
Log in

Effect of micro-alloying La on precipitation behavior, mechanical properties and electrical conductivity of Al-Mg-Si alloys

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The rapid industrial development calls for alloys that possess higher comprehensive properties. In this study, the effect of micro-alloying La addition on the precipitation behavior during artificial aging as well as the mechanical properties and electrical conductivity of Al-Mg-Si alloys were investigated by thermal analysis, microstructural characterizations and properties tests. The results demonstrated that micro-alloying La addition does not change the whole precipitation sequence during the artificial aging of Al-Mg-Si alloys as well as the atomic structure of the precipitates. However, the higher La-vacancy binding energy as well as the strong La-Si and La-Mg interactions can decrease the solubility of Si and Mg in the Al matrix and the β″ precipitation activation energy from 89.9 to 76.7 kJ/mol, leading to the improvement of the strength and electrical conductivity of Al-Mg-Si alloys simultaneously. The microstructural features affecting the strength and electrical conductivity were theoretically discussed in terms of the La addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng-A, 2000, 280: 37–49

    Article  Google Scholar 

  2. Hirsch J, Al-Samman T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater, 2013, 61: 818–843

    Article  Google Scholar 

  3. Fu J, Yang Z, Deng Y, et al. Influence of Zr addition on precipitation evolution and performance of Al-Mg-Si alloy conductor. Mater Charact, 2020, 159: 110021

    Article  Google Scholar 

  4. Edwards G A, Stiller K, Dunlop G L, et al. The precipitation sequence in Al-Mg-Si alloys. Acta Mater, 1998, 46: 3893–3904

    Article  Google Scholar 

  5. Chen H, Lu J, Kong Y, et al. Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al-Mg-Si alloys. Acta Mater, 2020, 185: 193–203

    Article  Google Scholar 

  6. Lai Y X, Fan W, Yin M J, et al. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys. J Mater Sci Tech, 2020, 41: 127–138

    Article  Google Scholar 

  7. Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys. Acta Mater, 2015, 98: 355–366

    Article  Google Scholar 

  8. Nikzad Khangholi S, Javidani M, Maltais A, et al. Optimization of mechanical properties and electrical conductivity in Al-Mg-Si 6201 alloys with different Mg/Si ratios. J Mater Res, 2020, 35: 2765–2776

    Article  Google Scholar 

  9. Yang H Y, Ma Z C, Lei C H, et al. High strength and high conductivity Cu alloys: A review. Sci China Tech Sci, 2020, 63: 2505–2517

    Article  Google Scholar 

  10. Li Z, Zang R, Zhao P, et al. Effects of pre-aging and natural aging on the clusters, strength and hemming performance of AA6014 alloys. Mater Sci Eng-A, 2020, 782: 139206

    Article  Google Scholar 

  11. Pogatscher S, Antrekowitsch H, Leitner H, et al. Influence of interrupted quenching on artificial aging of Al-Mg-Si alloys. Acta Mater, 2012, 60: 4496–4505

    Article  Google Scholar 

  12. Qian F, Mørtsell E A, Marioara C D, et al. Improving ageing kinetics and precipitation hardening in an Al-Mg-Si alloy by minor Cd addition. Materialia, 2018, 4: 33–37

    Article  Google Scholar 

  13. Bai S, Yi X, Liu G, et al. Effect of Sc addition on the microstructures and age-hardening behavior of an Al Cu Mg Ag alloy. Mater Sci Eng-A, 2019, 756: 258–267

    Article  Google Scholar 

  14. Peng Y H, Liu C Y, Ma Z Y, et al. Hardness, quench sensitivity, and electrical conductivity of 7xxx Al alloys with high Zn concentrations. Sci China Tech Sci, 2020, 63: 953–959

    Article  Google Scholar 

  15. Matsuda K, Ikeno S, Sato T, et al. New quaternary grain boundary precipitate in Al-Mg-Si alloy containing silver. Scripta Mater, 2006, 55: 127–129

    Article  Google Scholar 

  16. Weng Y, Ding L, Zhang Z, et al. Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy. Acta Mater, 2019, 180: 301–316

    Article  Google Scholar 

  17. Marioara C D, Andersen S J, Stene T N, et al. The effect of Cu on precipitation in Al-Mg-Si alloys. Philos Mag, 2007, 87: 3385–3413

    Article  Google Scholar 

  18. Ding L, Jia Z, Nie J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater, 2018, 145: 437–450

    Article  Google Scholar 

  19. Kumari S, Wenner S, Walmsley J C, et al. Copper enriched by deal-loying as external cathode in intergranular corrosion of aluminium alloy AA6005. Corrosion Sci, 2019, 158: 108090

    Article  Google Scholar 

  20. Liang W J, Rometsch P A, Cao L F, et al. General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu. Corrosion Sci, 2013, 76: 119–128

    Article  Google Scholar 

  21. Yao D, Bai Z, Qiu F, et al. Effects of La on the age hardening behavior and precipitation kinetics in the cast Al-Cu alloy. J Alloys Compd, 2012, 540: 154–158

    Article  Google Scholar 

  22. Yuan W, Liang Z, Zhang C, et al. Effects of La addition on the mechanical properties and thermal-resistant properties of Al-Mg-Si-Zr alloys based on AA 6201. Mater Des, 2012, 34: 788–792

    Article  Google Scholar 

  23. Zheng Q, Zhang L, Jiang H, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys. J Mater Sci Tech, 2020, 47: 142–151

    Article  Google Scholar 

  24. Zheng Q, Wu J, Jiang H, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys. Corrosion Sci, 2021, 179: 109113

    Article  Google Scholar 

  25. Gupta A K, Lloyd D J. Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry. Metall Mat Trans A, 1999, 30: 879–890

    Article  Google Scholar 

  26. Gupta A K, Lloyd D J, Court S A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si. Mater Sci Eng-A, 2001, 316: 11–17

    Article  Google Scholar 

  27. Guo M X, Zhang Y, Zhang X K, et al. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents. Mater Sci Eng-A, 2016, 669: 20–32

    Article  Google Scholar 

  28. Sepehrband P, Wang X, Jin H, et al. Microstructural evolution during non-isothermal annealing of a precipitation-hardenable aluminum alloy: Experiment and simulation. Acta Mater, 2015, 94: 111–123

    Article  Google Scholar 

  29. Zhang Y, Wei F, Mao J, et al. The difference of La and Ce as additives of electrical conductivity aluminum alloys. Mater Charact, 2019, 158: 109963

    Article  Google Scholar 

  30. Zandbergen H W, Andersen S J, Jansen J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science, 1997, 277: 1221–1225

    Article  Google Scholar 

  31. Yang W, Wang M, Zhang R, et al. The diffraction patterns from β″ precipitates in 12 orientations in Al-Mg-Si alloy. Scripta Mater, 2010, 62: 705–708

    Article  Google Scholar 

  32. Yang M, Chen H, Orekhov A, et al. Quantified contribution of β″ and β′ precipitates to the strengthening of an aged Al-Mg-Si alloy. Mater Sci Eng-A, 2020, 774: 138776

    Article  Google Scholar 

  33. Vissers R, van Huis M A, Jansen J, et al. The crystal structure of the β′ phase in Al-Mg-Si alloys. Acta Mater, 2007, 55: 3815–3823

    Article  Google Scholar 

  34. Yu Y, Tang S, Hu J. Effects of heat-treatment on the interfacial reaction and tensile properties of Al2O3 coated-Al18B4O33w/Al-Mg matrix composites. Mater Des, 2016, 90: 416–423

    Article  Google Scholar 

  35. Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites. Mater Sci Eng-A, 2019, 767: 138422

    Article  Google Scholar 

  36. Qian F, Zhao D, Mørtsell E A, et al. Enhanced nucleation and precipitation hardening in Al-Mg-Si(-Cu) alloys with minor Cd additions. Mater Sci Eng-A, 2020, 792: 139698

    Article  Google Scholar 

  37. Lu G, Nie S, Wang J, et al. Enhancing the bake-hardening responses of a pre-aged Al-Mg-Si alloy by trace Sn additions. J Mater Sci Tech, 2020, 40: 107–112

    Article  Google Scholar 

  38. Serizawa A, Hirosawa S, Sato T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy. Metall Mat Trans A, 2008, 39: 243–251

    Article  Google Scholar 

  39. Peng J, Bahl S, Shyam A, et al. Solute-vacancy clustering in aluminum. Acta Mater, 2020, 196: 747–758

    Article  Google Scholar 

  40. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829

    Article  Google Scholar 

  41. Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater, 2014, 62: 141–155

    Article  Google Scholar 

  42. Myhr O, Grong Ø, Andersen S J. Modelling of the age hardening behaviour of Al-Mg-Si alloys. Acta Mater, 2001, 49: 65–75

    Article  Google Scholar 

  43. Esmaeili S, Lloyd D J, Poole W J. A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater, 2003, 51: 2243–2257

    Article  Google Scholar 

  44. Jiang S Y, Wang R H. Manipulating nanostructure to simultaneously improve the electrical conductivity and strength in microalloyed Al-Zr conductors. Sci Rep, 2018, 8: 6202

    Article  Google Scholar 

  45. Raeisinia B, Poole W J, Lloyd D J. Examination of precipitation in the aluminum alloy AA6111 using electrical resistivity measurements. Mater Sci Eng-A, 2006, 420: 245–249

    Article  Google Scholar 

  46. Mulazimoglu M H, Drew R A L, Gruzelski J E. Electrical conductivity of aluminium-rich Al-Si-Mg alloys. J Mater Sci Lett, 1989, 8: 297–300

    Article  Google Scholar 

  47. Guo R, Wu J. Dislocation density based model for Al-Cu-Mg alloy during quenching with considering the quench-induced precipitates. J Alloys Compd, 2018, 741: 432–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HongXiang Jiang or JiuZhou Zhao.

Additional information

This work was supported by the Science and Technology Project of the Headquarters of State Grid Corporation of China (Grant No. 5500-201924129A-0-0-00).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Jiang, H., He, J. et al. Effect of micro-alloying La on precipitation behavior, mechanical properties and electrical conductivity of Al-Mg-Si alloys. Sci. China Technol. Sci. 64, 2012–2022 (2021). https://doi.org/10.1007/s11431-021-1863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1863-5

Navigation