Skip to main content
Log in

Realization of high thermal conductivity and tunable thermal expansion in the ScF3@Cu core-shell composites

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Achieving high performances of high thermal conductivity and low thermal expansion remains a great challenge. In this study, we have designed and synthesized the ScF3@Cu core-shell composites through a general electroless plating method to coat Cu on the surface of negative thermal expansion particles of ScF3. A spatially continuous copper network structure is formed in the present core-shell structure composites to achieve high thermal conductivity and low thermal expansion simultaneously, which is different from the conventional mixed composites. Notably, a high thermal conductivity (136.3 W m−1 K−1) has been achieved in the ScF3@Cu-40 core-shell composite with a low thermal expansion property (4.3×10−6K−1). The mechanism of thermal property and microstructure of the present core-shell composites are systematically studied based on different models. Our proposed approach in this study can be widely applicable to numerous advanced materials, which should simultaneously control thermal conductivity and thermal expansion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zweben C. Advances in composite materials for thermal management in electronic packaging. JOM, 1998, 50: 47–51

    Article  Google Scholar 

  2. Goyal R K, Tiwari A N, Negi Y S. High performance polymer/AlN composites for electronic substrate application. Compos Part B-Eng, 2013, 47: 70–74

    Article  Google Scholar 

  3. Hu Y, Du G, Chen N. A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos Sci Tech, 2016, 124: 36–43

    Article  Google Scholar 

  4. Ryelandt S, Mertens A, Delannay F. Al/stainless-invar composites with tailored anisotropy for thermal management in light weight electronic packaging. Mater Des, 2015, 85: 318–323

    Article  Google Scholar 

  5. Chen C, Xue Y, Li X, et al. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Compos Part A-Appl Sci Manufact, 2019, 118: 67–74

    Article  Google Scholar 

  6. Sidhu S S, Kumar S, Batish A. Metal matrix composites for thermal management: A review. Critical Rev Solid State Mater Sci, 2016, 41: 132–157

    Article  Google Scholar 

  7. Miranda A, Barekar N, McKay B J. MWCNTs and their use in Al-MMCs for ultra-high thermal conductivity applications: A review. J Alloys Compd, 2019, 774: 820–840

    Article  Google Scholar 

  8. Mizuuchi K, Inoue K, Agari Y, et al. Processing and thermal properties of Al/AlN composites in continuous solid-liquid co-existent state by spark plasma sintering. Compos Part B-Eng, 2012, 43: 1557–1563

    Article  Google Scholar 

  9. Chmielewski M, Weglewski W. Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials. Bull Polish Acad Sci Tech Sci, 2013, 61: 507–514

    Google Scholar 

  10. Zhang L, Qu X H, He X B, et al. Thermo-physical and mechanical properties of high volume fraction SiCp/Cu composites prepared by pressureless infiltration. Mater Sci Eng-A, 2008, 489: 285–293

    Article  Google Scholar 

  11. Teng F, Yu K, Luo J, et al. Microstructures and properties of Al-50% SiC composites for electronic packaging applications. Trans Non-ferrous Met Soc China, 2016, 26: 2647–2652

    Article  Google Scholar 

  12. Zhang W, Ding D, Gao P. High volume fraction Si particle-reinforced aluminium matrix composites fabricated by a filtration squeeze casting route. Mater Des, 2016, 90: 834–838

    Article  Google Scholar 

  13. Chen P, Luo G, Shen Q, et al. Thermal and electrical properties of W-Cu composite produced by activated sintering. Mater Des, 2013, 46: 101–105

    Article  Google Scholar 

  14. Wei Z, Ma P, Wang H, et al. The thermal expansion behaviour of SiCp/Al-20Si composites solidified under high pressures. Mater Des (1980–2015), 2015, 65: 387–394

    Article  Google Scholar 

  15. Liu Q, Wang F, Shen W, et al. Influence of interface thermal resistance on thermal conductivity of SiC/Al composites. Ceramics Int, 2019, 45: 23815–23819

    Article  Google Scholar 

  16. Chen J, Hu L, Deng J, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem Soc Rev, 2015, 44: 3522–3567

    Article  Google Scholar 

  17. Takenaka K. Negative thermal expansion materials: Technological key for control of thermal expansion. Sci Tech Adv Mater, 2012, 13: 013001

    Article  Google Scholar 

  18. Coates C S, Goodwin A L. How to quantify isotropic negative thermal expansion: Magnitude, range, or both? Mater Horiz, 2019, 6: 211–218

    Article  Google Scholar 

  19. Watanabe H, Tani J, Kido H, et al. Thermal expansion and mechanical properties of pure magnesium containing zirconium tungsten phosphate particles with negative thermal expansion. Mater Sci Eng-A, 2008, 494: 291–298

    Article  Google Scholar 

  20. Peng Z, Sun Y Z, Peng L M. Hydrothermal synthesis of ZrW2O8 nanorods and its application in ZrW2O8/Cu composites with controllable thermal expansion coefficients. Mater Des (1980–2015), 2014, 54: 989–994

    Article  Google Scholar 

  21. Della Gaspera E, Tucker R, Star K, et al. Copper-based conductive composites with tailored thermal expansion. ACS Appl Mater Interfaces, 2013, 5: 10966–10974

    Article  Google Scholar 

  22. Li X, Fang L, Chen B, et al. High-pressure and high-temperature synthesis and study of the thermal properties of ZrW2O8/Cu composites. Physica B-Condensed Matter, 2016, 487: 37–41

    Article  Google Scholar 

  23. Wang Y, Sheng J, Wang L, et al. Enhanced thermal and mechanical properties of Sr0.2Ba0.8TiO3/Cu composites by introducing Cu2O interface coating. Mater Des, 2019, 166: 107594

    Article  Google Scholar 

  24. Sheng J, Wang L D, Li D, et al. Thermal expansion behavior of copper matrix composite containing negative thermal expansion PbTiO3 particles. Mater Des, 2017, 132: 442–447

    Article  Google Scholar 

  25. Sheng J, Wang L, Li S, et al. Phase-transformation-induced extra thermal expansion behavior of (SrxBa1−x)TiO3/Cu composite. Sci Rep, 2016, 6: 27118

    Article  Google Scholar 

  26. Xue Z W, Liu Z, Wang L D, et al. Thermal properties of new copper matrix composite reinforced by β-eucryptite particulates. Mater Sci Tech, 2010, 26: 1521–1524

    Article  Google Scholar 

  27. Takenaka K, Hamada T, Kasugai D, et al. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion. J Appl Phys, 2012, 112: 083517

    Article  Google Scholar 

  28. Takenaka K, Kuzuoka K, Sugimoto N. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride. J Appl Phys, 2015, 118: 084902

    Article  Google Scholar 

  29. Yan X, Miao J, Liu J, et al. Zero thermal expansion, electrical conductivity and hardness of Mn3Zn0.5Sn0.5N/Cu composites. J Alloys Compd, 2016, 677: 52–56

    Article  Google Scholar 

  30. Shan X, Huang R, Han Y, et al. La(Fe, Si, Co)13/Cu conductive composites with tailoring thermal expansion. J Alloys Compd, 2016, 662: 505–509

    Article  Google Scholar 

  31. Shan X, Huang R, Han Y, et al. Preparation and property study of La(Fe, Si, Co)13/Cu composite with nearly zero thermal expansion behavior. J Alloys Compd, 2015, 648: 463–466

    Article  Google Scholar 

  32. Wang W, Huang R, Shan Y, et al. Adjustable thermal expansion in La(Fe, Si)13-based conductive composites by high-pressure synthesis. Prog Nat Sci-Mater Int, 2019, 29: 28–31

    Article  Google Scholar 

  33. Kennedy C A, White M A. Unusual thermal conductivity of the negative thermal expansion material, ZrW2O8. Solid State Commun, 2005, 134: 271–276

    Article  Google Scholar 

  34. Zhang L Q, Wang D, Tan J, et al. Sn-doped Mn3GaN negative thermal expansion material for space applications. Rare Metal Mater Eng, 2014, 43: 1304–1307

    Article  Google Scholar 

  35. Shao Y, Zhang M, Luo H, et al. Enhanced thermal conductivity in offstoichiometric La-(Fe,Co)-Si magnetocaloric alloys. Appl Phys Lett, 2015, 107: 152403

    Article  Google Scholar 

  36. Das S, Das S, Das K. Synthesis and thermal behavior of Cu/Y2W3O12 composite. Ceramics Int, 2014, 40: 6465–6472

    Article  Google Scholar 

  37. Greve B K, Martin K L, Lee P L, et al. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J Am Chem Soc, 2010, 132: 15496–15498

    Article  Google Scholar 

  38. Hu L, Chen J, Sanson A, et al. New insights into the negative thermal expansion: Direct experimental evidence for the “guitar-string” effect in cubic ScF3. J Am Chem Soc, 2016, 138: 8320–8323

    Article  Google Scholar 

  39. Hu L, Chen J, Fan L, et al. Zero thermal expansion and ferromagnetism in cubic Sc1−xMxF3 (M = Ga, Fe) over a wide temperature range. J Am Chem Soc, 2014, 136: 13566–13569

    Article  Google Scholar 

  40. Hu L, Chen J, Fan L, et al. Rapid molten salt synthesis of isotropic negative thermal expansion ScF3. J Am Ceram Soc, 2014, 97: 1009–1011

    Article  Google Scholar 

  41. Prosviryakov A S. SiC content effect on the properties of Cu-SiC composites produced by mechanical alloying. J Alloys Compd, 2015, 632: 707–710

    Article  Google Scholar 

  42. Takenaka K, Ichigo M. Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler. Compos Sci Tech, 2014, 104: 47–51

    Article  Google Scholar 

  43. Fei W D, Wang L D. Thermal expansion behavior and thermal mismatch stress of aluminum matrix composite reinforced by β-eucryptite particle and aluminum borate whisker. Mater Chem Phys, 2004, 85: 450–457

    Article  Google Scholar 

  44. Gao S, Zhao N, Liu Q, et al. Sc2W3O12/Cu composites with low thermal expansion coefficient and high thermal conductivity for efficient cooling of electronics. J Alloys Compd, 2019, 779: 108–114

    Article  Google Scholar 

  45. Gao S, Nan Z, Li Y, et al. Copper matrix thermal conductive composites with low thermal expansion for electronic packaging. Ceramics Int, 2020, 46: 18019–18025

    Article  Google Scholar 

  46. Oba Y, Tadano T, Akashi R, et al. First-principles study of phonon anharmonicity and negative thermal expansion in ScF3. Phys Rev Mater, 2019, 3: 1–11

    Google Scholar 

  47. Fei Z M, Li X G, Wang H. The thermal conductivity of particulate-reinforced aluminium composite materials. Acta Mater Compos Sin, 1990, 3: 27–33

    Google Scholar 

  48. Lin J, Tong P, Zhang K, et al. The GaNMn3-epoxy composites with tunable coefficient of thermal expansion and good dielectric performance. Compos Sci Tech, 2017, 146: 177–182

    Article  Google Scholar 

  49. Zhou C, Zhang Q, Tan X, et al. Fully-dense Mn3Zn0.7Ge0.3N/Al composites with zero thermal expansion behavior around room temperature. Materialia, 2019, 6: 100289

    Article  Google Scholar 

  50. Yang X, Cheng X, Li H, et al. Thermal and electric conductivity of near-zero thermal expansion ZrW2O8/ZrO2 composites. J Ceram Soc Jpn, 2008, 116: 471–474

    Article  Google Scholar 

  51. Wang Z C, Lin J C, Tong P, et al. Tunable thermal expansion in zinc-bonded composites: Zn/Si/Zn0.75Sn0.2Mn0.05NMn3. Scripta Mater, 2020, 177: 166–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21825102, 12004032 and 22001014), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. FRF-TP-18-001C2 and FRF-MP-20-40).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, N., Qiao, Y., Shi, N. et al. Realization of high thermal conductivity and tunable thermal expansion in the ScF3@Cu core-shell composites. Sci. China Technol. Sci. 64, 2057–2065 (2021). https://doi.org/10.1007/s11431-020-1758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1758-5

Keywords

Navigation