Skip to main content
Log in

Memristive neuron model with an adapting synapse and its hardware experiments

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Electromagnetic induction effect caused by neuron potential can be mimicked using memristor. This paper considers a flux-controlled memristor to imitate the electromagnetic induction effect of adapting feedback synapse and presents a memristive neuron model with the adapting synapse. The memristive neuron model is three-dimensional and non-autonomous. It has the time-varying equilibria with multiple stabilities, which results in the global coexistence of multiple firing patterns. Multiple numerical plots are executed to uncover diverse coexisting firing patterns in the memristive neuron model. Particularly, a nonlinear fitting scheme is raised and a fitting activation function circuit is employed to implement the memristive mono-neuron model. Diverse coexisting firing patterns are observed from the hardware experiment circuit and the measured results verify the numerical simulations well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sah M P, Kim H, Chua L O. Brains are made of memristors. IEEE Circuits Syst Mag, 2014, 14: 12–36

    Article  Google Scholar 

  2. Ma J, Yang Z, Yang L, et al. A physical view of computational neurodynamics. J Zhejiang Univ Sci A, 2019, 20: 639–659

    Article  Google Scholar 

  3. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    Article  Google Scholar 

  4. Chua L. If it’s pinched it’s a memristor. Semicond Sci Technol, 2014, 29: 104001

    Article  Google Scholar 

  5. Bao B, Yang Q, Zhu L, et al. Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations. Int J Bifurcation Chaos, 2019, 29: 1950134

    Article  MathSciNet  MATH  Google Scholar 

  6. Rajamani V, Kim H, Chua L. Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Sci China Inf Sci, 2018, 61: 060426

    Article  MathSciNet  Google Scholar 

  7. Azghadi M R, Linares-Barranco B, Abbott D, et al. A hybrid CMOS-memristor neuromorphic synapse. IEEE Trans Biomed Circuits Syst, 2017, 11: 434–445

    Article  Google Scholar 

  8. Bao H, Hu A, Liu W, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans Neural Netw Learning Syst, 2020, 31: 502–511

    Article  Google Scholar 

  9. Chen C J, Chen J Q, Bao H, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn, 2019, 95: 3385–3399

    Article  MATH  Google Scholar 

  10. Wang C N, Tang J, Ma J. Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur Phys J Spec Top, 2019, 228: 1907–1924

    Article  Google Scholar 

  11. Lu L L, Jia Y, Xu Y, et al. Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Tech Sci, 2019, 62: 427–440

    Article  Google Scholar 

  12. Lv M, Wang C N, Ren G D, et al. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn, 2016, 85: 1479–1490

    Article  Google Scholar 

  13. Ma J, Tang J. A review for dynamics of collective behaviors of network of neurons. Sci China Tech Sci, 2015, 58: 2038–2045

    Article  Google Scholar 

  14. Wu F Q, Wang C N, Jin W Y, et al. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Phys A-Stat Mech Appl, 2017, 469: 81–88

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao Y, Sun X Y, Liu Y, et al. Phase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic field. Nonlinear Dyn, 2018, 93: 1315–1324

    Article  Google Scholar 

  16. Hong Q H, Zhao L, Wang X P. Novel circuit designs of memristor synapse and neuron. Neurocomputing, 2019, 330: 11–16

    Article  Google Scholar 

  17. Lv M, Ma J, Yao Y G, et al. Synchronization and wave propagation in neuronal network under field coupling. Sci China Tech Sci, 2019, 62: 448–457

    Article  Google Scholar 

  18. Wang Z R, Joshi S, Savel’ev S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater, 2017, 16: 101–108

    Article  Google Scholar 

  19. Yan B N, Chen Y R, Li H. Challenges of memristor based neuromorphic computing system. Sci China Inf Sci, 2018, 61: 060425

    Article  Google Scholar 

  20. Mostaghimi S, Nazarimehr F, Jafari S, et al. Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl Math Comput, 2019, 348: 42–56

    MathSciNet  MATH  Google Scholar 

  21. Wang Y, Ma J, Xu Y, et al. The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int J Bifurcation Chaos, 2017, 27: 1750030

    Article  MathSciNet  MATH  Google Scholar 

  22. Rostami Z, Jafari S, Perc M, et al. Elimination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn, 2018, 94:679–692

    Article  Google Scholar 

  23. Bao B, Hu A, Bao H, et al. Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors. Complexity, 2018, 2018: 1–11

    Google Scholar 

  24. Ge M Y, Jia Y, Xu Y, et al. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn, 2018, 91: 515–523

    Article  Google Scholar 

  25. Bao H, Zhang Y, Liu W, et al. Memristor synapse-coupled memristive neuron network: Synchronization transition and occurrence of chimera. Nonlinear Dyn, 2020, 100: 937–950

    Article  MATH  Google Scholar 

  26. Xu F, Zhang J, Fang T, et al. Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn, 2018, 92: 1395–1402

    Article  Google Scholar 

  27. Xu Y, Jia Y, Ge M Y, et al. Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing, 2018, 283: 196–204

    Article  Google Scholar 

  28. Parastesh F, Rajagopal K, Alsaadi F E, et al. Birth and death of spiral waves in a network of Hindmarsh-Rose neurons with exponential magnetic flux and excitable media. Appl Math Comput, 2019, 354: 377–384

    MathSciNet  MATH  Google Scholar 

  29. Chen M, Qi J W, Wu H G, et al. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci China Tech Sci, 2020, 63: 1035–1044

    Article  Google Scholar 

  30. Zandi-Mehran N, Jafari S, Hashemi Golpayegani S M R, et al. Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field. Nonlinear Dyn, 2020, 100: 1809–1824

    Article  Google Scholar 

  31. Shafiei M, Jafari S, Parastesh F, et al. Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling. Commun Nonlinear Sci Numer Simul, 2020, 84: 105175

    Article  MathSciNet  MATH  Google Scholar 

  32. Jin W Y, Wang A, Ma J, et al. Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci China Tech Sci, 2019, 62: 2113–2119

    Article  Google Scholar 

  33. Shi S, Xiao M, Rong L N, et al. Stability and bifurcation control ofa neuron system under a novel fractional-order PD controller. Sci China Tech Sci, 2019, 62: 2120–2129

    Article  Google Scholar 

  34. Bao H, Liu W B, Chen M. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit. Nonlinear Dyn, 2019, 96: 1879–1894

    Article  MATH  Google Scholar 

  35. Ma J, Wu F Q, Ren G D, et al. A class of initials-dependent dynamical systems. Appl Math Comput, 2017, 298: 65–76

    MathSciNet  MATH  Google Scholar 

  36. Bao H, Chen M, Wu H G, et al. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci China Tech Sci, 2020, 63: 603–613

    Article  Google Scholar 

  37. Jafari S, Ahmadi A, Panahi S, et al. Extreme multi-stability: When imperfection changes quality. Chaos Solitons Fractals, 2018, 108: 182–186

    Article  Google Scholar 

  38. Chen M, Sun M, Bao H, et al. Flux-charge analysis of two-memristor-based Chua’s circuit: Dimensionality decreasing model for detecting extreme multistability. IEEE Trans Ind Electron, 2020, 67: 2197–2206

    Article  Google Scholar 

  39. Bennett D J, Li Y, Harvey P J, et al. Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. J Neurophysiol, 2001, 86: 1972–1982

    Article  Google Scholar 

  40. Bao B, Hu A, Xu Q, et al. AC-induced coexisting asymmetric bursters in the improved Hindmarsh-Rose model. Nonlinear Dyn, 2018, 92: 1695–1706

    Article  Google Scholar 

  41. Pisarchik A N, Jaimes-Reátegui R, García-Vellisca M A. Asymmetry in electrical coupling between neurons alters multistable firing behavior. Chaos, 2018, 28: 033605

    Article  MathSciNet  Google Scholar 

  42. Dong D W, Hopfield J J. Dynamic properties of neural networks with adapting synapses. Network-Comput Neural Syst, 1992, 3: 267–283

    Article  MathSciNet  MATH  Google Scholar 

  43. Li C G, Chen G R. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse. Chaos Solitons Fractals, 2005, 23: 1599–1604

    Article  MathSciNet  MATH  Google Scholar 

  44. Bao B C, Zhu Y X, Li C Q, et al. Global multistability and analog circuit implementation of an adapting synapse-based neuron model. Nonlinear Dyn, 2020, 101: 1105–1118

    Article  Google Scholar 

  45. Hu X F, Feng G, Duan S K, et al. A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn Syst, 2017, 28: 1889–1901

    Article  MathSciNet  Google Scholar 

  46. Jiang Y N, Huang P, Zhu D B, et al. Design and hardware implementation of neuromorphic systems with RRAM synapses and threshold-controlled neurons for pattern recognition. IEEE Trans Circuits Syst I, 2018, 65: 2726–2738

    Article  Google Scholar 

  47. Binczak S, Kazantsev V B, Nekorkin V I, et al. Experimental study of bifurcations in modified FitzHugh-Nagumo cell. Electron Lett, 2003, 39: 961–962

    Article  Google Scholar 

  48. Hayati M, Nouri M, Haghiri S, et al. Digital multiplierless realization of two coupled biological Morris-Lecar neuron model. IEEE Trans Circuits Syst I, 2015, 62: 1805–1814

    Article  Google Scholar 

  49. Jokar E, Abolfathi H, Ahmadi A, et al. An efficient uniform-segmented neuron model for large-scale neuromorphic circuit design: Simulation and FPGA synthesis results. IEEE Trans Circuits Syst I, 2019, 66: 2336–2349

    Article  MathSciNet  Google Scholar 

  50. Matsuda C, Torikai H. A novel generalized PWC neuron model: Theoretical analyses and efficient design ofbifurcation mechanisms of bursting. IEEE Trans Circuits Syst II, 2018, 65: 1738–1742

    Article  Google Scholar 

  51. Bao B C, Hou L P, Zhu Y X, et al. Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEU-Int J Electron Commun, 2020, 121: 153235

    Article  Google Scholar 

  52. Rech P C. Period-adding and spiral organization of the periodicity in a Hopfield neural network. Int J Mach Learn Cyber, 2015, 6: 1–6

    Article  Google Scholar 

  53. Cairone F, Gagliano S, Bucolo M. Experimental study on the SLUG flow in a serpentine microchannel. Exp Thermal Fluid Sci, 2016, 76: 34–44

    Article  Google Scholar 

  54. Li H Z, Hua Z Y, Bao H, et al. Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans Ind Electron, 2020, 2020: 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51777016 and 61801054), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191451).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Zhu, Y., Ma, J. et al. Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64, 1107–1117 (2021). https://doi.org/10.1007/s11431-020-1730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1730-0

Keywords

Navigation