Skip to main content
Log in

UAV-based integrated multispectral-LiDAR imaging system and data processing

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In the field of remote sensing imaging, multispectral imaging can obtain an image of the observed scene in several bands, while the light detection and ranging (LiDAR) can acquire the accurate 3D geometric information of the scene. With the development of remote sensing technology, how to effectively integrate the two imaging technologies in order to collect and process simultaneous spectral and 3D geometric information has been one of the frontier problems. Most of the present researches on simultaneous spectral and geometric data acquisition focus on the design of physical multispectral LiDAR system, which inevitably lead to an imaging system of heavy weight and high power consumption and thus inconvenient in practice. Different from the present researches, a UAV-based integrated multispectral-LiDAR system is introduced in this paper. Through simultaneous multi-sensor data collection and multispectral point cloud generation, a low-cost and UAV-based portable 3D geometric and spectral information acquisition system can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu Y F, Wang Q W, Jia X P, et al. A novel MKL model of integrating LiDAR data and MSI for urban area classification. IEEE Trans Geosci Remote Sens, 2015, 53: 5312–5326

    Article  Google Scholar 

  2. Gu Y F, Wang Q W. Discriminative graph-based fusion of HSI and LiDAR data for urban area classification. IEEE Geosci Remote Sens Lett, 2017, 14: 906–910

    Article  Google Scholar 

  3. Hong D, Chanussot J, Yokoya N, et al. Learning-shared cross-modality representation using multispectral-LiDAR and hyperspectral data. IEEE Geosci Remote Sens Lett, 2020, 1–5

    Google Scholar 

  4. Hong D, Yokoya N, Chanussot J, et al. CoSpace: Common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans Geosci Remote Sens, 2019, 57: 4349–4359

    Article  Google Scholar 

  5. Hong D, Yokoya N, Ge N, et al. Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification. ISPRS J Photogramm Remote Sens, 2019, 147: 193–205

    Article  Google Scholar 

  6. Woodhouse I H, Nichol C, Sinclair P, et al. A multispectral canopy LiDAR demonstrator project. IEEE Geosci Remote Sens Lett, 2011, 8: 839–843

    Article  Google Scholar 

  7. Puttonen E, Jaakkola A, Litkey P, et al. Tree classification with fused mobile laser scanning and hyperspectral data. Sensors, 2011, 11: 5158–5182

    Article  Google Scholar 

  8. Dinuls R, Erins G, Lorencs A, et al. Tree species identification in mixed Baltic forest using LiDAR and multispectral data. IEEE J Sel Top Appl Earth Observ Remote Sens, 2012, 5: 594–603

    Article  Google Scholar 

  9. Huang X, Zhang L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans Geosci Remote Sens, 2013, 51: 257–272

    Article  Google Scholar 

  10. Liao W Z, Pizurica A, Bellens R, et al. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci Remote Sens Lett, 2015, 12: 552–556

    Article  Google Scholar 

  11. Zhang Y, Prasad S. Multisource geospatial data fusion via local joint sparse representation. IEEE Trans Geosci Remote Sens, 2016, 54: 3265–3276

    Article  Google Scholar 

  12. Wallace A M, McCarthy A, Nichol C J, et al. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans Geosci Remote Sens, 2013, 52: 4942–4954

    Article  Google Scholar 

  13. Niu Z, Xu Z G, Sun G, et al. Design of a new multispectral waveform LiDAR instrument to monitor vegetation. IEEE Geosci Remote Sens Lett, 2015, 12: 1506–1510

    Article  Google Scholar 

  14. Nevalainen O, Hakala T, Suomalainen J, et al. Nitrogen concentration estimation with hyperspectral LiDAR. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2013, II-5/W2: 205–210

    Google Scholar 

  15. Pedergnana M, Marpu P R, Dalla Mura M, et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J Sel Top Signal Process, 2012, 6: 856–865

    Article  Google Scholar 

  16. Hakala T, Suomalainen J, Kaasalainen S, et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt Express, 2012, 20: 7119–7127

    Article  Google Scholar 

  17. Fernandez-Diaz J, Carter W, Glennie C, et al. Capability assessment and performance metrics for the Titan multispectral mapping LiDAR. Remote Sens, 2016, 8: 936

    Article  Google Scholar 

  18. Feigels V I, Kopilevich Y I. Lasers for lidar bathymetry and oceanographic research: Choice criteria. In: Proceedings of IGARSS’94-1994, IEEE International Geoscience and Remote Sensing Symposium. Pasadena, 1994. 475–478

    Chapter  Google Scholar 

  19. Fernandez-Diaz J C, Glennie C L, Carter W E, et al. Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor. IEEE J Sel Top Appl Earth Observ Remote Sens, 2013, 7: 623–635

    Article  Google Scholar 

  20. Chen Y, Räikkönen E, Kaasalainen S, et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source. Sensors, 2010, 10: 7057–7066

    Article  Google Scholar 

  21. Morsy S, Shaker A, El-Rabbany A, et al. Airborne multispectral Li- DAR data for land-cover classification and land/water mapping using different spectral indexes. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2016, III-3: 217–224

    Google Scholar 

  22. Briese C, Pfennigbauer M, Ullrich A, et al. Multi-wavelength airborne laser scanning for archaeological prospection. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2013, XL-5/W2: 119–124

    Google Scholar 

  23. Gong K, Fritsch D. Point cloud and digital surface model generation from high resolution multiple view stereo satellite imagery. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2018, XLII-2: 363–370

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanFeng Gu.

Additional information

This work was supported by the National Natural Science Foundation of Key International Cooperation (Grant No. 61720106002), the Key Research and Development Project of Ministry of Science and Technology (Grant No. 2017YFC1405100), and the Heading Wild Goose Plan of Heilongjiang Province, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Jin, X., Xiang, R. et al. UAV-based integrated multispectral-LiDAR imaging system and data processing. Sci. China Technol. Sci. 63, 1293–1301 (2020). https://doi.org/10.1007/s11431-019-1571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1571-0

Keywords

Navigation