Skip to main content
Log in

Effects of different atmospheres on the arc erosion behaviors of Ti3SiC2 cathodes

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The effects of ambient atmospheres on the arc erosion behaviors of Ti3SiC2 cathodes were investigated at 5.5 kV in argon, nitrogen, air, and oxygen. The mass loss of the cathodes increased in the order of argon, nitrogen, air, and oxygen and the morphologies were measured by 3D laser scanning confocal microscope with a gradual blooming phenomenon. Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were employed to detect the components of erosion regions. The erosion-chemical products mainly consisted of TiNx in nitrogen, TiNx, TiO2 and SiO2 in air, TiO2 and SiO2 in oxygen. The arc energy was responsible for the arc erosion characteristics in different atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanabu S, Zaima E. Power switching technology in Japan. In: 1st International Conference on Electric Power Equipment — Switching Technology, Xi’an, China, 2011. 1–6

  2. Kesim M T, Yu H, Sun Y, et al. Corrosion, oxidation, erosion and performance of Ag/W-based circuit breaker contacts: A review. Corrosion Sci, 2018, 135: 12–34

    Article  Google Scholar 

  3. Huang X C, Feng Y, Qian G, et al. Arc corrosion behavior of CuTi3AlC2 composites in air atmosphere. Sci China Technol Sci, 2017, 61: 551–557

    Article  Google Scholar 

  4. Slade P G. Electrical contacts principles and applications. 2nd ed. New York: Taylor & Francis Group, 2014. 880–889

    Google Scholar 

  5. Hasegawa M, Imai K, Makimoto J, et al. An experimental study on operating characteristics of Ag, Pd and Cu contacts in argon atmosphere. In: Proceedings of the 49th IEEE Holm Conference on Electrical Contacts, DC, USA, 2003. 190–197

  6. Xin C, Wu J, Bin L. Characteristic analysis of dc arc interrupting under hydrogen and air (in Chinese). Low Volt App, 2011, 10: 6–9

    Google Scholar 

  7. Ghorui S, Meher K C, Kar R, et al. Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen. J Phys D-Appl Phys, 2016, 49: 295201

    Article  Google Scholar 

  8. Grogg D, Schrank C. Impact of the gas environment on the electric arc. In: IEEE 62nd Holm Conference on Electrical Contacts (Holm), Horgen, CHE, 2016. 125–128

    Chapter  Google Scholar 

  9. Barsoum M W. The Mn+1AXn phases: A new class of solids. Prog Solid State Chem, 2000, 28: 201–281

    Article  Google Scholar 

  10. Zhang H, Su R, Shi L, et al. Structural changes of Ti3SiC2 induced by helium irradiation with different doses. Appl Surf Sci, 2018, 434: 1210–1216

    Article  Google Scholar 

  11. Dmitruk A, Żak A, Naplocha K, et al. Development of pore-free TiAl-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration. Mater Charact, 2018, 146: 182–188

    Article  Google Scholar 

  12. Barsoum M W, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceramic Soc, 1996, 79: 1953–1956

    Article  Google Scholar 

  13. Patel M K, Tallman D J, Valdez J A, et al. Effect of helium irradiation on Ti3AlC2 at 500°C. Scripta Mater, 2014, 77: 1–4

    Article  Google Scholar 

  14. Tan Y, Luo H, Zhang H, et al. High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics. Scripta Mater, 2017, 134: 47–51

    Article  Google Scholar 

  15. Huang X, Feng Y, Qian G, et al. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere. Ceramics Int, 2017, 43: 10601–10605

    Article  Google Scholar 

  16. Zhang P, Ngai T L, Xie H, et al. Erosion behaviour of a Ti3SiC2 cathode under low-current vacuum arc. J Phys D-Appl Phys, 2013, 46: 395202

    Article  Google Scholar 

  17. Huang X, Feng Y, Qian G, et al. Erosion behavior of Ti3AlC2 cathode under atmosphere air arc. J Alloys Compd, 2017, 727: 419–427

    Article  Google Scholar 

  18. Kalin M. Influence of flash temperatures on the tribological behaviour in low-speed sliding: A review. Mater Sci Eng-A, 2004, 374: 390–397

    Article  Google Scholar 

  19. Kubo S, Kato K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk. Tribol Int, 1999, 32: 367–378

    Article  Google Scholar 

  20. Xin C, Wu J, Liu B. Investigation of DC arc in hydrogen and air. In: 2nd International Conference on Electric Power Equipment — Switching Technology, Matsue, Japan, 2013

    Google Scholar 

  21. Wei H, Wu M, Dong Z, et al. Composition, microstructure and SERS properties of titanium nitride thin film prepared via nitridation of solgel derived titania thin films. J Raman Spectrosc, 2017, 48: 578–585

    Article  Google Scholar 

  22. Kuznetsov M V, Zhuravlev J F, Gubanov V A. XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum. J Electron Spectr Related Phenomena, 1992, 58: 169–176

    Article  Google Scholar 

  23. Sprenger D, Bach H, Meisel W, et al. XPS study of leached glass surfaces. J Non-Crystalline Solids, 1990, 126: 111–129

    Article  Google Scholar 

  24. Lange F, Schmelz H, KnÖzinger H. An X-ray photoelectron spectroscopy study of oxides of arsenic supported on TiO2. J Electron Spectr Related Phenomena, 1991, 57: 307–315

    Article  Google Scholar 

  25. Wei X, Yu D, Sun Z, et al. Arc characteristics and microstructure evolution of W-Cu contacts during the vacuum breakdown. Vacuum, 2014, 107: 83–89

    Article  Google Scholar 

  26. Buchholt K, Ghandi R, Domeij M, et al. Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-silicon carbide. Appl Phys Lett, 2011, 98: 042108

    Article  Google Scholar 

  27. Wenger C, Lukosius M, Costina I, et al. Investigation of atomic vapour deposited TiN/HfO2/SiO2 gate stacks for mosfet devices. Microelectron Eng, 2008, 85: 1762–1765

    Article  Google Scholar 

  28. Sugimoto Y, Kajiwara M, Yamamoto K, et al. Dependences of effective work functions of TaN on HfO2 and SiO2 on post-metallization anneal. Thin Solid Films, 2008, 517: 204–206

    Article  Google Scholar 

  29. Sohn S D, Kim S H, Kwak S K, et al. Defect-associated adsorption of monoethanolamine on TiO2(1 1 0): An alternative way to control the work function of oxide electrode. Appl Surf Sci, 2019, 467–468: 1213–1218

    Article  Google Scholar 

  30. Xu J, Li S, Zeng Z, et al. Heat capacity, density, vapor pressure, and enthalpy of vaporization of isoamyl DL-lactate. J Chem Eng Data, 2019, 64: 3793–3798

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Feng.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51871085, 51571078), and the Natural Science Foundation of Anhui Province (Grant Nos. 1908085QE218, 1808085ME122).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Feng, Y., Zhao, H. et al. Effects of different atmospheres on the arc erosion behaviors of Ti3SiC2 cathodes. Sci. China Technol. Sci. 64, 620–628 (2021). https://doi.org/10.1007/s11431-019-1552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1552-x

Keywords

Navigation