Skip to main content
Log in

Distributed disturbance-observer-based vibration control for a flexible-link manipulator with output constraints

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The issue of output constraints is studied for a flexible-link manipulator in the presence of unknown spatially distributed disturbances. The manipulator can be taken as an Euler-Bernoulli beam and its dynamic is expressed by partial differential equations. On account of the uncertainty of disturbances, we present a disturbance observer to estimate infinite dimensional disturbances on the beam. The observer is proven exponentially stable. Considering the problem of output constraints in the practical engineering, we propose a novel distributed vibration controller based on the disturbance observer to fulfill the position regulation of the joint angle and suppress elastic deflections on the flexible link, while confining the regulating errors of output in a suitable scope that we can assign. The closed-loop system is demonstrated exponentially stable based on an integral-barrier Lyapunov function. Simulations validate the effectiveness of the design scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang L, Liu J. Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model. IET Control Theor Appl, 2013, 7: 43–51

    Article  MathSciNet  Google Scholar 

  2. Lee H H, Prevost J. A coupled sliding-surface approach for the trajectory control of a flexible-link robot based on a distributed dynamic model. Int J Control, 2005, 78: 629–637

    Article  MathSciNet  MATH  Google Scholar 

  3. Sohn J W, Han Y M, Choi S B, et al. Vibration and position tracking control of a flexible beam using SMA wire actuators. J Vib Control, 2009, 15: 263–281

    Article  MathSciNet  Google Scholar 

  4. He W, Meng T, Huang D, et al. Adaptive boundary iterative learning control for an Euler-Bernoulli beam system with input constraint. IEEE Trans Neural Netw Learning Syst, 2018, 29: 1539–1549

    Article  MathSciNet  Google Scholar 

  5. Han Z J, Xu G Q. Exponential stabilisation of a simple tree-shaped network of Timoshenko beams system. Int J Control, 2010, 83: 1485–1503

    Article  MathSciNet  MATH  Google Scholar 

  6. Han Z J, Xu G Q. Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks. ESAIM-COCV, 2011, 17: 552–574

    Article  MathSciNet  MATH  Google Scholar 

  7. He W, He X, Zou M, et al. PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans Contr Syst Technol, 2018, 1–8

    Google Scholar 

  8. Ge S S, Zhang S, He W. Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance. Int J Control, 2011, 84: 947–960

    Article  MathSciNet  MATH  Google Scholar 

  9. Khot S, Yelve N P, Tomar R, et al. Active vibration control of cantilever beam by using PID based output feedback controller. J Vib Control, 2012, 18: 366–372

    Article  MathSciNet  Google Scholar 

  10. Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance. Automatica, 2013, 49: 2911–2918

    Article  MathSciNet  MATH  Google Scholar 

  11. He W, Meng T, Zhang S, et al. Trajectory tracking control for the flexible wings of a micro aerial vehicle. IEEE Trans Syst Man Cybern Syst, 2018, 99: 1–11

    Google Scholar 

  12. Paranjape A A, Guan J, Chung S J, et al. PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans Robot, 2013, 29: 625–640

    Article  Google Scholar 

  13. Jiang T, Liu J, He W. Boundary control for a flexible manipulator with a robust state observer. J Vib Control, 2016, 24: 260–271

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang S, He W, Huang D. Active vibration control for a flexible string system with input backlash. IET Control Theor Appl, 2016, 10: 800–805

    Article  MathSciNet  Google Scholar 

  15. Liu Z, Liu J, He W. Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica, 2017, 77: 302–310

    Article  MathSciNet  MATH  Google Scholar 

  16. He W, Ouyang Y, Hong J. Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans Ind Inf, 2017, 13: 48–59

    Article  Google Scholar 

  17. He W, Zhang S. Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans Contr Syst Technol, 2017, 25: 351–357

    Article  Google Scholar 

  18. Park S K, Lee S H. Disturbance observer based robust control for industrial robots with flexible joints. In: 2007 International Conference on Control, Automation and Systems. Seoul, 2007. 584–589

    Google Scholar 

  19. Nikoobin A, Haghighi R. Lyapunov-based nonlinear disturbance observer for serial n-link robot manipulators. J Intell Robot Syst, 2009, 55: 135–153

    Article  MATH  Google Scholar 

  20. Yun J N, Su J B. Design of a disturbance observer for a two-link manipulator with flexible joints. IEEE Trans Contr Syst Technol, 2014, 22: 809–815

    Article  Google Scholar 

  21. Zheng G, Efimov D, Bejarano F J, et al. Interval observer for a class of uncertain nonlinear singular systems. Automatica, 2016, 71: 159–168

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen M, Ge S S. Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Trans Cybern, 2013, 43: 1213–1225

    Article  Google Scholar 

  23. Mohammadi A, Tavakoli M, Marquez H J, et al. Nonlinear disturbance observer design for robotic manipulators. Control Eng Practice, 2013, 21: 253–267

    Article  Google Scholar 

  24. Tee K P, Ren B, Ge S S. Control of nonlinear systems with timevarying output constraints. Automatica, 2011, 47: 2511–2516

    Article  MathSciNet  MATH  Google Scholar 

  25. He W, Ge S S. Vibration control of a flexible beam with output constraint. IEEE Trans Ind Electron, 2015, 62: 5023–5030

    Article  Google Scholar 

  26. Ge S S, Lee T H, Gong J Q. A robust distributed controller of a singlelink SCARA/Cartesian smart materials robot. Mechatronics, 1999, 9: 65–93

    Article  Google Scholar 

  27. D’Andrea R, Dullerud G E. Distributed control design for spatially interconnected systems. IEEE Trans Automat Contr, 2003, 48: 1478–1495

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu F. Distributed control for interconnected linear parameter-dependent systems. IEE Proc-Control Theor Appl, 2003, 150: 518–527

    Article  Google Scholar 

  29. Yang H, Liu J, Lan X. Observer design for a flexible-link manipulator with PDE model. J Sound Vib, 2015, 341: 237–245

    Article  Google Scholar 

  30. Yang H, Liu J. Distributed piezoelectric vibration control for a flexible-link manipulator based on an observer in the form of partial differential equations. J Sound Vib, 2016, 363: 77–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinKun Liu.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, J. & He, W. Distributed disturbance-observer-based vibration control for a flexible-link manipulator with output constraints. Sci. China Technol. Sci. 61, 1528–1536 (2018). https://doi.org/10.1007/s11431-017-9280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9280-1

Keywords

Navigation