Skip to main content
Log in

Drag reduction via turbulent boundary layer flow control

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Turbulent boundary layer control (TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities, which have improved the understanding of the flow structures of turbulence. Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures. The combination of simulation, understanding and micro-actuation technologies offers new opportunities to significantly decrease drag, and by doing so, to increase fuel efficiency of future aircraft. The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry, even though it is still at a low technology readiness level (TRL). This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quadrio M, Ricco P. Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech, 1999, 521: 251–271

    Article  MATH  Google Scholar 

  2. Spalart P R, McLean J D. Drag reduction: Enticing turbulence, and then an industry. Philos Trans R Soc A-Math Phys Eng Sci, 2011, 369: 1556–1569

    Article  Google Scholar 

  3. Skote M, Mishra M, Wu Y. Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with Reynolds number. Int J Aerospace Eng, 2015, 2015: 1–9

    Article  Google Scholar 

  4. Gatti D, Quadrio M. Reynolds-number dependence of turbulent skinfriction drag reduction induced by spanwise forcing. J Fluid Mech, 2016, 802: 553–582

    Article  MathSciNet  Google Scholar 

  5. Bernard P S, Thomas J M, Handler R A. Vortex dynamics and the production of Reynolds stress. J Fluid Mech, 1993, 253: 385–419

    Article  MATH  Google Scholar 

  6. Kravchenko A G, Choi H, Moin P. On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys Fluids A-Fluid Dyn, 1993, 5: 3307–3309

    Article  Google Scholar 

  7. Kasagi N, Suzuki Y, Fukagata K. Microelectromechanical systemsbased feedback control of turbulence for skin friction reduction. Annu Rev Fluid Mech, 2009, 41: 231–251

    Article  MATH  Google Scholar 

  8. Viswanath P R. Aircraft viscous drag reduction using riblets. Prog Aerospace Sci, 2002, 38: 571–600

    Article  Google Scholar 

  9. Walsh M J, Weinstein L M. Drag and heat-transfer characteristics of small longitudinally ribbed surfaces. AIAA J, 1979, 17: 770–771

    Article  Google Scholar 

  10. Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech, 1997, 338: 59–87

    Article  Google Scholar 

  11. Gallagher J, Thomas A S W. Turbulent boundary layer characteristics over streamwise grooves. In: 2nd Applied Aerodynamics Conference. Seattle: AIAA, 1984

    Google Scholar 

  12. Luchini P, Manzo F, Pozzi A. Resistance of a grooved surface to parallel flow and cross-flow. J Fluid Mech, 1991, 228: 87

    MATH  Google Scholar 

  13. García-Mayoral R, Jiménez J. Hydrodynamic stability and breakdown of the viscous regime over riblets. J Fluid Mech, 2011, 678: 317–347

    Article  MATH  Google Scholar 

  14. Sasamori M, Mamori H, Iwamoto K, et al. Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow. Exp Fluids, 2014, 55: 1828

    Article  Google Scholar 

  15. Quadrio M, Ricco P, Viotti C. Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J Fluid Mech, 2009, 627: 161

    Article  MathSciNet  MATH  Google Scholar 

  16. Agostini L, Touber E, Leschziner M A. Spanwise oscillatory wall motion in channel flow: Drag-reduction mechanisms inferred from DNSpredicted phase-wise property variations at. J Fluid Mech, 2014, 743: 606–635

    Article  Google Scholar 

  17. Touber E, Leschziner M A. Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J Fluid Mech, 2012, 693: 150–200

    Article  MATH  Google Scholar 

  18. Agostini L, Touber E, Leschziner M A. The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int J Heat Fluid Flow, 2015, 51: 3–15

    Article  Google Scholar 

  19. Hurst E, Yang Q, Chung Y M. The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J Fluid Mech, 2014, 759: 28–55

    Article  Google Scholar 

  20. Marusic I, Mathis R, Hutchins N. Predictive model for wall-bounded turbulent flow. Science, 2010, 329: 193–196

    Article  MathSciNet  MATH  Google Scholar 

  21. Yudhistira I, Skote M. Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J Turbul, 2011, 12: N9

    Article  Google Scholar 

  22. Skote M. Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys Fluids, 2011, 23: 081703

    Article  Google Scholar 

  23. Skote M. Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J Fluid Mech, 2013, 730: 273–294

    Article  MathSciNet  MATH  Google Scholar 

  24. Skote M. Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int J Heat Fluid Flow, 2012, 38: 1–12

    Article  Google Scholar 

  25. Skote M. Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall. Int J Heat Fluid Flow, 2014, 50: 352–358

    Article  Google Scholar 

  26. Hack M J P, Zaki T A. The influence of harmonic wall motion on transitional boundary layers. J Fluid Mech, 2014, 760: 63–94

    Article  Google Scholar 

  27. Negi P S, Mishra M, Skote M. DNS of a single low-speed streak subject to spanwise wall oscillations. Flow Turbul Combust, 2015, 94: 795–816

    Article  Google Scholar 

  28. Diez F J, Dahm W J A. Design and fabrication of unsteady electrokinetic microactuator arrays for turbulent boundary layer control. J Micromech Microeng, 2004, 14: 1307–1320

    Article  Google Scholar 

  29. Diez F J, Dahm W J A. Micro Electro Kinetic Actuator (MEKA) Arrays for active sublayer control of turbulent boundary layers. In: 40th AIAA Aerospace Sciences Meeting & Exhibit. Reno: AIAA, 2002

    Google Scholar 

  30. Rathnasingham R, Breuer K S. Active control of turbulent boundary layers. J Fluid Mech, 2003, 495: 209–233

    Article  MATH  Google Scholar 

  31. Cannata M, Iuso G. Spanwise directed synthetic jets for wall turbulence control. In: 4th Flow Control Conference. Seattle, Washington: AIAA, 2008

    Google Scholar 

  32. Pimpin A, Suzuki Y, Kasagi N. Microelectrostrictive actuator with metal compliant electrodes for flow control applications. In: 17th IEEE Int. Conf. MEMS. Maastricht, 2004

    Google Scholar 

  33. Pimpin A, Suzuki Y, Kasagi N. Microelectrostrictive actuator with large out-of-plane deformation for flow-control application. J Microelectromech Syst, 2007, 16: 753–764

    Article  Google Scholar 

  34. Dubois P, Rosset S, Niklaus M, et al. Metal ion implanted compliant electrodes in dielectric electroactive polymer (EAP) membranes. Adv Sci Tech, 2008, 61: 18–25

    Article  Google Scholar 

  35. Merlen A, Brunet P, Zoueshtiagh F, et al. Microsystems for flow control and transfer: a challenge for CFD. In: Proceedings of 6th ICCHMT. Guangzhou, 2009

    Google Scholar 

  36. Pernod P, Preobrazhensky V, Merlen A, et al. MEMS magneto-mechanical microvalves (MMMS) for aerodynamic active flow control. J Magn Magn Mater, 2010, 322: 1642–1646

    Article  Google Scholar 

  37. Mane P, Mossi K, Bryant R. Pressure loading of piezo composite unimorphs. MRS Proc, 2005, 888: 0888-V01-06

  38. Liang Y, Kuga Y, Taya M. Design of membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet applications. Sensor Actuat A-Phys, 2006, 125: 512–518

    Article  Google Scholar 

  39. Tesar V. Mechanism of pressure recovery in jet-type actuators. Sensors Actuators A-Phys, 2009, 152: 182–191

    Article  Google Scholar 

  40. Tesar V, Trávnícek Z, Kordík J, et al. Experimental investigation of a fluidic actuator generating hybrid-synthetic jets. Sensor Actuat A-Phys, 2007, 138: 213–220

    Article  Google Scholar 

  41. Lin S C, Resler E L, Kantrowitz A. Electrical conductivity of highly ionized argon produced by shock waves. J Appl Phys, 1955, 26: 95–109

    Article  Google Scholar 

  42. Malik M R, Weinstein L M, Hussaini M Y. Ion wind drag reduction. In: 21st Aerospace Sciences Meeting. Reno: AIAA, 1983

    Google Scholar 

  43. Léger L, Moreau E, Touchard G. Electrohydrodynamic airflow control along a flat plate by a DC surface corona discharge—Velocity profile and wall pressure measurements. In: 1st Flow Control Conference. St. Louis: AIAA, 2002

    Google Scholar 

  44. Roth J R, Sherman D M. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In: 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1998

    Google Scholar 

  45. Benard N, Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids, 2014, 55: 1846

    Article  Google Scholar 

  46. Jukes T, Choi K S. Turbulent drag reduction by surface plasma through spanwise flow oscillation. In: 3rd AIAA Flow Control Conference. San Francisco, 2006

    Google Scholar 

  47. Grundmann S, Tropea C. Experimental transition delay using glowdischarge plasma actuators. Exp Fluids, 2007, 42: 653–657

    Article  Google Scholar 

  48. Grundmann S, Tropea C. Active cancellation of artificially introduced Tollmien-Schlichting waves using plasma actuators. Exp Fluids, 2008, 44: 795–806

    Article  Google Scholar 

  49. Duchmann A, Simon B, Tropea C, et al. Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA J, 2014, 52: 358–367

    Article  Google Scholar 

  50. Hanson R E, Bade K M, Belson B A, et al. Feedback control of slowly-varying transient growth by an array of plasma actuators. Phys Fluids, 2014, 26: 024102

    Article  Google Scholar 

  51. Benard N, Jolibois J, Moreau E, et al. Aerodynamic plasma actuators: A directional micro-jet device. Thin Solid Films, 2008, 516: 6660–6667

    Article  Google Scholar 

  52. Santhanakrishnan A, Jacob J D. Flow control with plasma synthetic jet actuators. J Phys D-Appl Phys, 2007, 40: 637–651

    Article  Google Scholar 

  53. Ibrahim I H, Skote M. Simulations of the linear plasma synthetic jet actuator utilizing a modified Suzen-Huang model. Phys Fluids, 2012, 24: 113602

    Article  Google Scholar 

  54. Ibrahim I H, Skote M. Simulating plasma actuators in a channel flow configuration by utilizing the modified Suzen-Huang model. Comput Fluids, 2014, 99: 144–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bugeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A., Bugeda, G., Ferrer, E. et al. Drag reduction via turbulent boundary layer flow control. Sci. China Technol. Sci. 60, 1281–1290 (2017). https://doi.org/10.1007/s11431-016-9013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-9013-6

Keywords

Navigation