Skip to main content
Log in

Work entransy and its applications

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The entransy theory has been applied to the analyses of heat-work conversion systems. The physical meaning and the applications of work entransy are analyzed and discussed in this paper. Work entransy, which is clarified to be a process dependent quantity, is not the entransy of work, but the system entransy change accompanying work transfer. The relationship between the work entransy and the output work is set up. When the application preconditions are satisfied, larger work entransy leads to larger output work. Entransy loss, which was proposed and applied to heat work conversion processes with irreversible heat transfer, is the net entransy flow into the system and the summation of work entransy and entransy dissipation. The application preconditions of entransy loss are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai B, Li M, Ma Y. Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluidsbased transcritical Rankine cycles for low-grade heat energy recovery. Energy, 2014, 64: 942–952

    Article  Google Scholar 

  2. La D, Li Y, Dai Y, et al. Effect of irreversible processes on the thermodynamic performance of open-cycle desiccant cooling cycles. Energ Convers Manage, 2013, 67: 44–56

    Article  Google Scholar 

  3. Cheng X T, Liang X G. Entransy loss in thermodynamic processes and its application. Energy, 2012, 44: 964–972

    Article  Google Scholar 

  4. Bejan A. Advanced Engineering Thermodynamics. 2nd ed. New York: John Wiley & Sons, 1997

    Google Scholar 

  5. Giangaspero G, Sciubba E. Application of the entropy generation minimization method to a solar heat exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps. Energy, 2013, 58: 52–65

    Article  Google Scholar 

  6. Sciubba E. A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers. Revue Générale de Thermique, 1996, 35: 517–525

    Article  Google Scholar 

  7. Lucia U, Sciubba E. From Lotka to the entropy generation approach. Physica A, 2013, 392: 3634–3639

    Article  MathSciNet  Google Scholar 

  8. Uçkan Ð, Yilmaz T, Hürdogan E, et al. Exergy analysis of a novel configuration of desiccant based evaporative air conditioning system. Energ Convers Manage, 2014, 84: 524–532

    Article  Google Scholar 

  9. Cheng X T, Liang X G. Discussion on the applicability of entropy generation minimization to analyses and optimizations of thermodynamic processes. Energ Convers Manage, 2013, 73: 121–127

    Article  Google Scholar 

  10. Thu K, Kim Y D, Myat A, et al. Entropy generation analysis of an adsorption cooling cycle. Int J Heat Mass Transfer, 2013, 60: 143–155

    Article  Google Scholar 

  11. Wang X, Yu J, Ma M. Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis. Int J Heat Mass Transfer, 2013, 63: 361–365

    Article  Google Scholar 

  12. Piccolo A. Optimization of thermoacoustic refrigerators using second law analysis. Appl Energ, 2013, 103: 358–367

    Article  Google Scholar 

  13. Salamon P, Hoffmann K H, Schubert S, et al. What conditions make minimum entropy production equivalent to maximum power production? J Non-Equilib Thermodyn, 2001, 26: 73–83

    Article  MATH  Google Scholar 

  14. Wang W H, Cheng X T, Liang X G. Entropy and entransy analyses and optimizations of the Rankine cycle. Energ Convers Manage, 2013, 68: 82–88

    Article  Google Scholar 

  15. Cheng X T, Liang X G. Heat-work conversion optimization of one-stream heat exchanger networks. Energy, 2012, 47: 421–429

    Article  Google Scholar 

  16. Sun C, Cheng X T, Liang X G. Output power analyses for the thermodynamic cycles of thermal power plants. Chin Phys B, 2014, 23: 050513

    Article  Google Scholar 

  17. Guo Z Y, Zhu H Y, Liang X G. Entransy-A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556

    Article  MATH  Google Scholar 

  18. Chen L G, Wei S H, Sun F R. Constructal entransy dissipation minimization for “volume-point” heat conduction. J Phys D Appl Phys, 2008, 41: 195506

    Article  Google Scholar 

  19. Chen L G, Wei S H, Sun F R. Constructal entransy dissipation minimization of an electromagnet. J Appl Phys, 2009, 105: 094906

    Article  Google Scholar 

  20. Chen L G, Wei S H, Sun F R. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer, 2011, 54: 210–216

    Article  MATH  Google Scholar 

  21. Xie Z H, Chen L G, Sun F R. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci China Tech Sci, 2011, 54: 1249–1258

    Article  MATH  Google Scholar 

  22. Chen L G, Wei S H, Sun F R. The area-point constructal entransy dissipation rate minimization for discrete variable cross-section conducting path. Int J Low-Carbon Tech, 2014, 9: 20–28

    Article  Google Scholar 

  23. Yuan F, Chen Q. Two energy conservation principles in convective heat transfer optimization. Energy, 2011, 36: 5476–5485

    Article  Google Scholar 

  24. Wu J, Cheng X T. Generalized thermal resistance and its application to thermal radiation based on entransy theory. Int J Heat Mass Transfer, 2013, 58: 374–381

    Article  Google Scholar 

  25. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull, 2014, 59: 2470–2477

    Article  Google Scholar 

  26. Wei S, Chen L, Sun F. Constructal entransy dissipation rate minimization of round tube heat exchanger cross-section. Int J Thermal Sci, 2011, 50: 1285–1292

    Article  Google Scholar 

  27. Cheng X T, Liang X G, Guo Z Y. Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull, 2011, 56: 847–854

    Article  Google Scholar 

  28. Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer-A review and update. Int J Heat Mass Transfer, 2013, 63: 65–81

    Article  Google Scholar 

  29. Cheng X T, Wang W H, Liang X G. Entransy analysis of open thermodynamic systems. Chin Sci Bull, 2012, 57: 2934–2940

    Article  Google Scholar 

  30. Cheng X T, Liang X G. Discussion on the entransy expressions of the laws of thermodynamics and their applications. Energy, 2013, 56: 46–51

    Article  Google Scholar 

  31. Cheng X T, Liang X G. Analyses and optimizations of thermodynamic performance of an air conditioning system for room heating. Energ Buildings, 2013, 67: 387–391

    Article  Google Scholar 

  32. Wang W H, Cheng X T, Liang X G. Analyses of the endoreversible Carnot cycle with entropy generation minimization and entransy theory. Chin Phys B, 2013, 22: 110506

    Article  Google Scholar 

  33. Zhou B, Cheng X T, Liang X G. Power output analyses and optimizations of the Stirling cycle. Sci China Tech Sci, 2013, 56: 228–236

    Google Scholar 

  34. Yang A, Chen L, Xia S, et al. The optimal configuration of reciprocating engine based on maximum entransy loss. Chin Sci Bull, 2014, 59: 2031–2038

    Article  Google Scholar 

  35. Hu G J, Cao B Y, Guo Z Y. Entransy and entropy revisited. Chin Sci Bull, 2011, 56: 2974–2977

    Article  Google Scholar 

  36. Cheng X T, Chen Q, Hu G J, et al. Entransy balance for the closed system undergoing thermodynamic processes. Int J Heat Mass Transfer, 2013, 60: 180–187

    Article  Google Scholar 

  37. Moran M J. Availability Analysis: A Guide to Efficient Energy Use. New Jersey: Prentice-Hall Inc., 1982. 46–48

    Google Scholar 

  38. Cheng X T, Liang X G. T-q diagram of heat transfer and heat-work conversion. Int Commun Heat Mass Transfer, 2014, 53: 9–13

    Article  Google Scholar 

  39. Cheng X T, Liang X G. Entransy: Its physical basis, applications and limitations. Chin Sci Bull, 2014, 59: 5309–5323

    Article  Google Scholar 

  40. Cheng X T, Liang X G. Optimization of combined Carnot heat engines with different objectives. Chin Phys B, 2015, 24: 060510

    Article  Google Scholar 

  41. Cheng X T, Liang X G. The ability to do work indirectly for closed systems and its measurement (In Chinese). Sci China Tech Sci, 2013, 43: 943–947

    Google Scholar 

  42. Grazzini G, Borchiellini R, Lucia U. Entropy versus entransy. J Non-Equilib Thermodynamics, 2013, 38: 259–271

    Google Scholar 

  43. Lucia U. Stationary open systems: A brief review on contemporary theories on irreversibility. Physica A, 2013, 392: 1051–1062

    Article  MathSciNet  Google Scholar 

  44. Herwig H. Do we really need “entransy”? A critical assessment of a new quantity in heat transfer analysis. ASME J Heat Transfer, 2014, 136: 045501

    Article  Google Scholar 

  45. Bejan A. “Entransy,” and its lack of content in physics. ASME J Heat Transfer, 2014, 136: 055501

    Article  Google Scholar 

  46. Awad M M. Discussion: “Entransy is now clear”. ASME J Heat Transfer, 2014, 136: 095502

    Article  Google Scholar 

  47. Grazzini G, Rocchetti A. Thermodynamic optimization of irreversible refrigerators. Energy Convers Manage, 2014, 84: 583–588

    Article  Google Scholar 

  48. Manjunath K, Kaushik S C. Second law thermodynamic study of heat exchangers: A review. Renew Sust Energ Rev, 2014, 40: 348–374

    Article  Google Scholar 

  49. Awad M M. Entransy unmasked. Energ Convers Manage, 2014, 88: 1070–1071

    Article  Google Scholar 

  50. Awad M M. Reply to comments on “Second law thermodynamic study of heat exchangers: A review” (Renewable and Sustainable Energy Reviews 2015; 44: 608–610). Renew Sust Energ Rev, 2015, 51: 1792–1793

    Article  Google Scholar 

  51. Bejan A. Heatlines (1983) versus synergy (1998). Int J Heat Mass Transfer, 2015, 81: 654–658

    Article  Google Scholar 

  52. Guo Z Y, Chen Q, Liang X G. Closure to “Discussion of ‘Do we really need “entransy”?’”. ASME J Heat Transfer, 2014, 136: 046001

    Article  Google Scholar 

  53. Guo Z Y. Closure to “Discussion of ‘Entransy’, and its lack of content in physics”. ASME J Heat Transfer, 2014, 136: 056001

    Article  Google Scholar 

  54. Chen Q, Guo Z Y, Liang X G. Closure to “Discussion of ‘Entransy is Now Clear’”. ASME J Heat Transfer, 2014, 136: 096001

    Article  Google Scholar 

  55. Cheng X T, Liang X G. Reply to “Entransy unmasked” by Awad. Energ Convers Manage, 2014, 88: 1072–1073

    Article  Google Scholar 

  56. Cheng X T, Chen Q, Liang X G. Comments on “Second law thermodynamic study of heat exchangers: A review”. Renew Sust Energ Rev, 2015, 44: 608–610

    Article  Google Scholar 

  57. Wu Y Q. Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law. Chin Phys B, 2015, 24: 070506

    Article  Google Scholar 

  58. Oliveira S R, Milanez L F. Equivalence between the application of entransy and entropy generation. Int J Heat Mass Transfer, 2014, 79: 518–525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueTao Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Liang, X. Work entransy and its applications. Sci. China Technol. Sci. 58, 2097–2103 (2015). https://doi.org/10.1007/s11431-015-5939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5939-4

Keywords

Navigation