Skip to main content
Log in

Rare earth and transitional metal colloidal supercapacitors

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The search of electrode materials with high electrochemical activity is one of key solutions to actualize both high energy density and high power density in a supercapacitor. Recently, we have developed one novel kind of rare earth and transitional metal colloidal supercapacitors, which can deliver higher specific capacitance than electrical double-layer capacitors (EDLC) and traditional pseudocapacitors. The electrode materials in colloidal supercapacitors arin colloidal supercapacitors aree in-situ formed electroactive colloids, which were transformed from commercial rare earth and transitional metal salts in alkaline electrolyte by chemical and electrochemical assisted coprecipitation. In these colloidal supercapacitors, multiple-electron Faradaic redox reactions can be utilized, which can deliver ultrahigh specific capacitance often larger than one-electron capacitance. Multiple-valence metal cations used in our designed colloidal supercapacitors mainly include Ce3+, Yb3+, Er3+, Fe3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Sn2+ and Sn4+. The colloidal supercapacitors can be served as the promising next-generation high performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin. Science, 2014, 343: 1210–1211

    Article  Google Scholar 

  2. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845–854

    Article  Google Scholar 

  3. Chen K, Xue D. Chemical reaction and crystallization control on electrode materials for electrochemical energy storage (in Chinese). Sci China Tech Sci, 2015, 45: 36–49

    Google Scholar 

  4. Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–6257

    Article  Google Scholar 

  5. Liu F, Song S, Xue D, et al. Folded Structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094

    Article  Google Scholar 

  6. Liu J, Xia H, Xue D, et al. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc, 2009, 131: 12086–12087

    Article  Google Scholar 

  7. Chen K, Xue D, Komarneni S. Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO. J Power Sources, 2015, 275: 136–143

    Article  Google Scholar 

  8. Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York: Plenum Press. 1999

    Book  Google Scholar 

  9. Chen K, Sun C, Xue D. Morphology engineering of high performance binary oxide electrodes. Phys Chem Chem Phys, 2015, 17: 732–750

    Article  Google Scholar 

  10. Chen K, Song S, Xue D. Beyond graphene: Materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453

    Article  Google Scholar 

  11. Tyler Mefford J, Hardin W G, Dai S, et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat Mater, 2014, 13: 726–732

    Article  Google Scholar 

  12. Naoi K, Naoi W, Aoyagi S, et al. New generation “nanohybrid supercapacitor”. Acc Chem Res, 2013, 46: 1075–1083

    Article  Google Scholar 

  13. Chen K, Liu F, Xue D, et al. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale, 2015, 7: 432–439

    Article  Google Scholar 

  14. Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930-2946

    Article  Google Scholar 

  15. Wang Y, Xia Y. Recent progress in supercapacitors: from materials design to system construction. Adv Mater, 2013, 25: 5336–5342

    Article  Google Scholar 

  16. Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol, 2011, 6: 232–236

    Article  Google Scholar 

  17. Chen K, Song S, Xue D. An ionic aqueous pseudocapacitor system: Electroactive ions in both salt-electrode and redox-electrolyte. RSC Adv, 2014, 4: 23338–23343

    Article  Google Scholar 

  18. Chen K, Xue D. Ionic Supercapacitor electrode materials: a system-level design of electrode and electrolyte for transforming ions into colloids. Colloids Interface Sci Commun, 2014, 1: 39–42

    Article  Google Scholar 

  19. Chen X, Chen K, Wang H, et al. Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system. Crystengcomm, 2014, 16: 6707–6715

    Article  Google Scholar 

  20. Chen K, Xue D. Formation of electroactive colloids via in-situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor. J Colloid Interface Sci, 2014, 430: 265–271

    Article  Google Scholar 

  21. Chen K, Xue D. Crystallization of tin chloride for promising pseudocapacitor electrode. Crystengcomm, 2014, 16: 4610–4618

    Article  Google Scholar 

  22. Chen K, Xue D. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance. J Colloid Interface Sci, 2014, 424: 84–89

    Article  Google Scholar 

  23. Chen K, Yang Y, Li K, et al. CoCl2 designed as excellent pseudocapacitor electrode materials. ACS Sustainable Chem Eng, 2014, 2: 440-444

    Article  Google Scholar 

  24. Kang J, Wei S, Zhu K, et al. First-principles theory of electrochemical capacitance of nanostructured materials: Dipole-assisted subsurface intercalation of lithium in pseudocapacitive TiO2 anatase nanosheets. J Phys Chem C, 2011, 115: 4909–4915

    Article  Google Scholar 

  25. Chen K, Xue D. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode. J Colloid Interface Sci, 2014, 416: 172–176

    Article  Google Scholar 

  26. Chen K, Song S, Li K, et al. Water-soluble inorganic salts with ultrahigh specific capacitance: Crystallization transformation investigation of CuCl2 electrodes. Crystengcomm, 2013, 15: 10367–10373

    Article  Google Scholar 

  27. Chen K, Chen X, Xue D. Hydrothermal route to crystallization of FeOOH nanorods via FeCl3·6H2O: Effect of Fe3+ concentration on pseudocapacitance of iron-based materials. Crystengcomm, 2015, 17: 1906–1910

    Article  Google Scholar 

  28. Chen K, Song S, Xue D. Faceted Cu2O structures with enhanced Li-ion battery anode performances. Crystengcomm, 2015, 17: 2110–2117

    Article  Google Scholar 

  29. Chen K, Xue D. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. J Colloid Interface Sci, 2015, 446: 77–83

    Article  Google Scholar 

  30. Sun C, Xue D. Chemical bonding theory of single crystal growth and its application to ϕ3’’ YAG bulk crystal. Crystengcomm, 2014, 16: 2129–2135

    Article  Google Scholar 

  31. Sun C, Xue D. Size-dependent oxygen storage ability of nano-sized ceria. Phys Chem Chem Phys, 2013, 15: 14414–14419

    Article  Google Scholar 

  32. Li H B, Yu M H, Wang F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun, 2013, 4: 1894

    Article  Google Scholar 

  33. Chen K, Xue D, Komarneni S. Colloidal pseudocapacitor: Nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition. J Power Sources, 2015, 279: 365–371

    Article  Google Scholar 

  34. Chen X, Chen K, Wang H, et al. Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte. Electrochim Acta, 2014, 147: 216–224

    Article  Google Scholar 

  35. Chen X, Chen K, Wang H, et al. A colloidal pseudocapacitor: Direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system. J Colloid Interface Sci, 2015, 444: 49–57

    Article  Google Scholar 

  36. Chen K, Yin S, Xue D. Binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: Formation of electroactive colloids via in-situ electric field assisted coprecipitation. Nanoscale, 2015, 7: 1161–1166

    Article  Google Scholar 

  37. Chen K, Noh Y, Li K, et al. Microwave-hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage. J Phys Chem C, 2013, 117: 10770–10779

    Article  Google Scholar 

  38. Sun, C, Zhang Y, Song S, et al. Tunnel-dependent supercapacitance of MnO2: Effects of crystal structure. J Appl Crystallogr, 2013, 46: 1128–1135

    Article  Google Scholar 

  39. Wei W, Cui X, Chen W, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev, 2011, 40: 1697–1721

    Article  Google Scholar 

  40. Xu H, Hu X, Yang H, et al. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: Larger areal mass promises higher energy density. Adv Energy Mater, 2015, 5: 1401882

    Google Scholar 

  41. Chang J, Jin M, Yao F, et al. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater, 2013, 23: 5074–5083

    Article  Google Scholar 

  42. Nataraj S K, Song Q, Al-Muhtaseb S A, et al. Thin, flexible supercapacitors made from carbon nanofiber electrodes decorated at room temperature with manganese oxide nanosheets. J Nanomater, 2013, 8: 3805–3816

    Google Scholar 

  43. Jones T W, Bailey M R, Donnez S W. Elucidation of the discharge mechanism of CuO cathode material in alkaline electrolyte. J Electrochem Soc, 2013, 160: A703–A708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongFeng Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Xue, D. Rare earth and transitional metal colloidal supercapacitors. Sci. China Technol. Sci. 58, 1768–1778 (2015). https://doi.org/10.1007/s11431-015-5915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5915-z

Keywords

Navigation