Skip to main content
Log in

Investigation and characterization of an arc-shaped piezoelectric generator

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

novel arc-shaped piezoelectric generator based on flexible PVDF thin film is presented and systemically studied. With a periodical external force, the generator can produce peak voltage of 45.6 V and peak power of 30.7 μW. The maximum power density reaches 38.4 μW/cm3 with a 4 cm × 2 cm × 100 μm device, at the optimum load resistance of 33.33 MOhm. The influence of frequency, size dimension and load resistance are investigated through experimental measurements. With this high output arc-shaped generator, capacitors can be effectively charged and three commercial LEDs have been directly lighted without any energy storage unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Z L. Self-powered nanosensors and nanosystems. Adv Mater, 2012, 24: 280–285

    Article  Google Scholar 

  2. Lewis N S. Toward cost-effective solar energy use. Science, 2007, 315: 798–801

    Article  Google Scholar 

  3. Cuadras A, Gasulla M, Ferrari V. Thermal energy harvesting through pyroelectricity. Sens Actuators A, Phys, 2010, 158: 132–139

    Article  Google Scholar 

  4. Yang Y, Guo W, Pradel K C, et al. Pyroelectric nanogenerators for harvesting Thermoelectric Energy. Nano Lett, 2012, 12: 2833–2838

    Article  Google Scholar 

  5. Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 2007, 315: 804–807

    Article  Google Scholar 

  6. Hwang J H, Hyoung C H, Park K H, et al. Energy harvesting from ambient electromagnetic wave using human body as antenna. Electron Lett, 2013, 49: 149–151

    Article  Google Scholar 

  7. Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun, 2003, 26: 1131–1144

    Article  Google Scholar 

  8. Sari I, Balkan T, Külah H. An Electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique. J Microelectromech Syst, 2010, 19: 14–27

    Article  Google Scholar 

  9. Wang P, Tanaka K, Sugiyama S, et al. A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol, 2009, 15: 941–951

    Article  Google Scholar 

  10. Han M, Yuan Q, Sun X, et al. Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. J Microelectomech Syst, 2013, DOI: 10.1109/JMEMS.2013.2267773

    Google Scholar 

  11. Peano F, Tambosso T. Design and optimization of a MEMS electret-based capacitive energy scavenger. J Microelectromech Syst, 2005, 14: 429–435

    Article  Google Scholar 

  12. Fan F R, Tian Z Q, Wang Z L. Nano Energy, 2012, 1: 328–334

    Article  Google Scholar 

  13. Zhang X S, Han M D, Wang R X, et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett, 2013, 13: 1168–1172

    Article  Google Scholar 

  14. Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312: 242–246

    Article  Google Scholar 

  15. Elfrink R, Kamel T M, Goedbloed M, et al. Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng, 2009, 19: 094005-1–094005-8

    Article  Google Scholar 

  16. Liu H, Tay C J, Quan C, et al. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectomech Syst, 2011, 20: 1131–1142

    Article  Google Scholar 

  17. Han M D, Zhang X S, Liu W, et al. Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism. Sci China Tech Sci, 2013, 56: 1835–1841

    Article  Google Scholar 

  18. Choi W J, Jeon Y, Jeong J H, et al. Energy harvesting MEMS device based on thin film thin film piezoelectric cantilevers. J Electroceram, 2006, 17: 543–548

    Article  Google Scholar 

  19. Jeon Y B, Sood R, Jeong J H, et al. MEMS power generator with transvers mode thin film PZT. Sens Actuators A, Phys, 2005, 122: 16–22

    Article  Google Scholar 

  20. Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316: 102–105

    Article  Google Scholar 

  21. Lee S, Bae S H, Lin L, et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater, 2013, 23: 2445–2449

    Article  Google Scholar 

  22. Zhu G, Wang A C, Liu Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano lett, 2012, 12: 3086–3090

    Article  Google Scholar 

  23. Gu L, Cui N, Li C, et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett, 2013, 13: 91–94

    Article  Google Scholar 

  24. Lu F, Lee H P, Lim S P. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 2004, 13: 57–63

    Article  Google Scholar 

  25. Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoeleectrics. Micro IEEE, 2001, 20: 30–42

    Article  Google Scholar 

  26. Meng B, Tang W, Too Z H, et al. A transparent single-frictionsurface triboelectric generator and self-powered touch sensor. Energy Environ Sci, 2013, doi: 10.1039/c3ee42311e

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiXia Zhang.

Electronic supplementary material

Supplementary material, approximately 317 KB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, M., Liu, W., Zhang, X. et al. Investigation and characterization of an arc-shaped piezoelectric generator. Sci. China Technol. Sci. 56, 2636–2641 (2013). https://doi.org/10.1007/s11431-013-5373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5373-4

Keywords

Navigation