Skip to main content
Log in

“Volume-point” heat conduction constructal optimization based on entransy dissipation rate minimization with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Based on constructal theory, the constructs of three “volume-point” heat conduction models with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale are optimized by taking minimum entransy dissipation rate as optimization objective. The optimal constructs of the three “volume-point” heat conduction models with minimum dimensionless equivalent thermal resistance are obtained. The results show that the optimal constructs of the three-dimensional cylindrical assembly based on the minimizations of dimensionless equivalent thermal resistance and dimensionless maximum thermal resistance are different, which is obviously different from the comparison between those of the corresponding two-dimensional rectangular assembly based on the minimizations of these two objectives. The optimal constructs based on rectangular and triangular elements on microscale and nanoscale when the size effect takes effect are obviously different from those when the size effect does not take effect. Because the thermal current density in the high conductivity channel of the rectangular and triangular second order assemblies are not linear with the length, the optimal constructs of these assemblies based on the minimization of entransy dissipation rate are different from those based on the minimization of maximum temperature difference. The dimensionless equivalent thermal resistance defined based on entransy dissipation rate reflects the average heat transfer performance of the construct. The studies on “volume-point” heat conduction constructal problems at three-dimensional conditions and microscale and nanoscale by taking minimum entransy dissipation rate as optimization objective extend the application range of the entransy dissipation extremum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Bejan A, Lorente S. Thermodynamic optimization of flow geometry in mechanical and civil engineering. J Non-Equilib Thermodyn, 2001, 26(4): 305–354

    Article  Google Scholar 

  3. Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys, 2006, 100(4): 041301

    Article  Google Scholar 

  4. Bejan A, Merkx G W. Constructal Theory of Social Dynamics. New York: Springer, 2007

    Google Scholar 

  5. Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008

    Book  Google Scholar 

  6. Bejan A, Lorente S, Miguel A F, et al. Constructal Human Dynamics, Security & Sustainability. Amsterdam: IOS Press, 2009

    Google Scholar 

  7. Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume, Trans ASME, J Heat Transfer, 1997, 40(4): 799–816

    Article  MATH  Google Scholar 

  8. Ledezma G, Bejan A, Errera M. Constructal tree networks for heat transfer. J Appl Phys, 1997, 82(1): 89–100

    Article  Google Scholar 

  9. Almogbel M, Bejan A. Constructal optimization of nonuniformly distributed tree-shaped flow structures for conduction. Int J Heat Mass Transfer, 2001, 44(22): 4185–4194

    Article  MATH  Google Scholar 

  10. Ghodoossi L, Egrican N. Exact solution for cooling of electronics using constructal theory. J Appl Phys, 2003, 93(8), 4922–4929

    Article  Google Scholar 

  11. Wu W, Chen L, Sun F. On the “area to point” flow problem based on constructal theory. Energy Convers Mgmt, 2007, 48(1): 101–105

    Article  Google Scholar 

  12. Wu W, Chen L, Sun F. Improvement of tree-like network constructal method for heat conduction optimization. Sci China Ser-E: Tech Sci, 2006, 49(3): 332–341

    Article  Google Scholar 

  13. Ghodoossi S, Egrican N. Conductive cooling of triangular shaped electronics using constructal theory. Energy Convers Mgmt, 2004, 45(6): 811–828

    Article  Google Scholar 

  14. Wei S, Chen L, Sun F. The volume-point constructal optimization for discrete variable cross-section conducting path. Appl Energy, 2009, 86(7/8): 1111–1118

    Article  Google Scholar 

  15. Zhou S, Chen L, Sun F. Optimization of constructal volume-point conduction with variable cross-section conducting path. Energy Convers Mgmt, 2007, 48(1): 106–111

    Article  MathSciNet  Google Scholar 

  16. Neagu M, Bejan A. Constructal-theory tree networks of’ constant’ thermal resistance. J Appl Phys, 1999, 86(2): 1136–1144

    Article  Google Scholar 

  17. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate minimization for heat conduction based on variable-shaped element. Chin Sci Bull, 2011, 56(22): 2400–2410

    Article  Google Scholar 

  18. Karakas A, Camdali U, Tunc M. Constructal optimization of heat generating volumes. Int J Exergy, 2009, 6(5): 637–654

    Article  Google Scholar 

  19. Ledezma G A, Bejan A. Constructal three-dimensional trees for conduction between a volume and one point. Trans ASME, J Heat Transfer, 1998, 120(4): 977–984

    Article  Google Scholar 

  20. Neagu M, Bejan A. Three-dimensional tree constructs of ‘constant’ thermal resistance. J Appl Phys, 1999, 86(12): 7107–7115

    Article  Google Scholar 

  21. Alebrahim A, Bejan A. Constructal trees of circular fins for conductive and convective heat transfer. Int J Heat Mass Transfer, 1999, 42(19): 3585–3597

    Article  MATH  Google Scholar 

  22. Majumdar A. Microscale heat conduction in dielectric thin films. J Heat Transfer, 1993, 115, 7–16

    Article  Google Scholar 

  23. Goodson K E, Flik M K. Electron and phonon thermal conduction in epitaxial high-Tc superconducting films. J Heat Transfer, 1993, 115, 17–25

    Article  Google Scholar 

  24. Guo Z. Frontier of heat transfer-microscale heat transfer (in Chinese). Adv Mech, 2000, 30(1): 1–6

    Google Scholar 

  25. Duncan A B, Peterson G P. Review of microscale heat transfer. Appl Mech Rev, 1994, 47(9): 397–428

    Article  Google Scholar 

  26. Gao P, Le Person S, Favre-Marinet M. Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels. Int J Therm Sci, 2002, 41(11), 1017–1027

    Article  Google Scholar 

  27. Guo Z, Li Z. Size effect on microscale single-phase flow and heat transfer. Int J heat Mass Transfer, 2003, 46(1): 149–159

    Article  Google Scholar 

  28. Guo Z, Li Z. Size effect on single-phase channel flow and heat transfer at microscale. Int J Heat Fluid Flow, 2003, 24(3), 284–298

    Article  Google Scholar 

  29. Liu T, Ji J, Guo Z, et al. Achievements of major project “microscale heat transfer in astronautic technology and microeletronic devices” (in Chinese). Chin Sci fund, 2004, 6: 349–351

    Google Scholar 

  30. Hu X, Jain A, Goodson K E. Investigation of the natural convection boundary condition in microfabricated structures. Int J Therm Sci, 2008, 47(7): 820–824

    Article  Google Scholar 

  31. Gosselin L, Bejan A. Constructal heat trees at micro and nanoscales. J Appl Phys, 2004, 96(10): 5852–5859

    Article  Google Scholar 

  32. Guo Z, Zhu H, Liang X. Entransy — A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50(13/14): 2545–2556

    Article  MATH  Google Scholar 

  33. Li Z, Guo Z. Field Synergy Principle of Heat Convection Optimization. Beijing: Science Press, 2010

    Google Scholar 

  34. Guo Z, Cheng X, Xia Z. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chin Sci Bull, 2003, 48(4): 406–410

    Google Scholar 

  35. Han G, Zhu H, Cheng X, et al. Transfer similarity among heat conduction, elastic motion and electric conduction (in Chinese). J Eng Thermophys, 2005, 26(6): 1022–1024

    Google Scholar 

  36. Han G, Guo Z. Physical mechanism of heat conduction ability dissipation and its analytical expression (in Chinese). Proc CSEE, 2007, 27(17): 98–102

    Google Scholar 

  37. Zhu H, Chen J, Guo Z. Electricity and thermal analogous experimental study for entransy dissipation extreme principle (in Chinese). Prog Natural Sci, 2007, 17(12): 1692–1698

    Google Scholar 

  38. Chen Q, Ren J. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin Sci Bull, 2008, 53(23): 3753–3761

    Article  Google Scholar 

  39. Chen Q, Ren J, Guo Z. The extremum principle of mass entransy dissipation and its application to decontamination ventilation designs in space station cabins. Chin Sci Bull, 2009, 54(16): 2862–2870

    Article  Google Scholar 

  40. Xia S, Chen L, Sun F. Optimization for entransy dissipation minimi zation in heat exchanger. Chin Sci Bull, 2009, 54(19): 3587–3595

    Article  Google Scholar 

  41. Wang S, Chen Q, Zhang B. An equation of entransy and its application. Chin Sci Bull, 2009, 54(19): 3572–3578

    Article  Google Scholar 

  42. Guo J, Cheng L, Xu M. Entransy dissipation number and its application to heat exchanger performance evaluation. Chin Sci Bull, 2009, 54(15): 2708–2713

    Article  Google Scholar 

  43. Chen Q, Wang M, Pan N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34(9): 1199–1206

    Article  Google Scholar 

  44. Chen L, Chen Q, Li Z, et al. Optimization for a heat exchanger couple based on the minimum thermal resistance principle. Int J Heat Mass Transfer, 2009, 52(21/22): 4778–4784

    Article  MATH  Google Scholar 

  45. Guo Z, Liu X, Tao W, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transfer, 2010, 53(13/14): 2877–2884

    Article  MATH  Google Scholar 

  46. Xia S, Chen L, Sun F. Entransy dissipation minimization for liquid-solid phase processes. Sci China Tech Sci, 2010, 53(4): 960–968

    Article  MATH  Google Scholar 

  47. Xia S, Chen L, Sun F. Entransy dissipation minimization for a class of one-way isothermal mass transfer processes. Sci China Tech Sci, 2011, 54(2): 352–361

    Article  MathSciNet  MATH  Google Scholar 

  48. Guo J, Xu M, Cheng L. Principle of equipartition of entransy dissipation for heat exchanger design. Sci China Tech Sci, 2010, 53(5): 1309–1314

    Article  MATH  Google Scholar 

  49. Guo J, Xu M, Chen L. The influence of viscous heating on the entransy in two-fluid heat exchangers. Sci China: Tech Sci, 2011, 54(5): 1267–1274

    Article  Google Scholar 

  50. Cheng X, Xu X, Liang X. Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft. Sci China Tech Sci, 2011, 54(4): 964–971

    Article  Google Scholar 

  51. Cheng X, Liang X, Guo Z. Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull, 2011, 56(9): 847–854

    Article  Google Scholar 

  52. Li X, Guo J, Xu M, et al. Entransy dissipation minimization for optimization of heat exchanger design. Chin Sci Bull, 2011, 56(20), 2174–2178

    Article  MathSciNet  Google Scholar 

  53. Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51(8): 1283–1295

    Article  MATH  Google Scholar 

  54. Wei S, Chen L, Sun F. Constructal entransy dissipation minimization for “volume-point” heat conduction without the premise of optimized last-order construct. Int J Exergy, 2010, 7(5): 627–639

    Article  Google Scholar 

  55. Wei S, Chen L, Sun F. Constructal optimization of discrete and continuous-variable cross-section conducting path based on entransy dissipation rate minimization. Sci China Tech Sci, 2010, 53(6): 1666–1677

    Article  MATH  Google Scholar 

  56. Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on triangular element. Therm Sci, 2010, 14(4): 1075–1088

    Article  Google Scholar 

  57. Wei S, Chen L, Sun F. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci China Ser E-Tech Sci, 2009, 52(10): 2981–2989

    Article  MATH  Google Scholar 

  58. Xie Z, Chen L, Sun F. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Tech Sci, 2009, 52(12): 3504–3513

    Article  MATH  Google Scholar 

  59. Xie Z, Chen L, Sun F. Constructal optimization on T-shaped cavity based on entransy dissipation minimization. Chin Sci Bull, 2009, 54(23): 4418–4427

    Article  Google Scholar 

  60. Xiao Q Chen L, Sun F. Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction. Chin Sci Bull, 2011, 56(1): 102–112

    Article  Google Scholar 

  61. Chen L, Wei S, Sun F. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer, 2011, 54(1–3): 210–216

    Article  MATH  Google Scholar 

  62. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins. Sci China Tech Sci, 2011, 54(1): 211–219

    Article  MATH  Google Scholar 

  63. Xie Z, Chen L, Sun F. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci China Tech Sci, 2011, 41(7): 962–970

    Google Scholar 

  64. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate and flow-resistance minimizations for cooling channels. Sci China Tech Sci, 2010, 53(9): 2458–2468

    Article  MATH  Google Scholar 

  65. Wei S, Chen L, Sun F. Constructal entransy dissipation rate minimization of round tube heat exchanger cross-section. Int J Therm Sci, 2011, 50(7), 1285–1292

    Article  Google Scholar 

  66. Xiao Q, Chen L, Sun F. Constructal design for a steam generator based on entransy dissipation extremum principle. Sci China Tech Sci, 2011, 54(6): 1462–1468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, H., Chen, L. & Sun, F. “Volume-point” heat conduction constructal optimization based on entransy dissipation rate minimization with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale. Sci. China Technol. Sci. 55, 779–794 (2012). https://doi.org/10.1007/s11431-011-4690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4690-8

Keywords

Navigation