Skip to main content
Log in

Ductility of metal thin films in flexible electronics

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Flexible, large area electronics using various organic and inorganic materials are beginning to show great promise. During manufacture and service, large deformation of these hybrid materials will pose significant challenges in terms of high performance and reliability. A deep understanding of the ductility or flexibility of macroelectronics becomes one of the major issues that must be addressed urgently. This paper describes the current level of understanding on the thin-film ductility, both free-standing and substrate-supported, and relevant influencing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis J. Material challenge for flexible organic devices. Mater Today, 2006, 9(4):38–45

    Article  Google Scholar 

  2. Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(29): 911–918

    Article  Google Scholar 

  3. Vaeth K M. OLED-display technology. Inform Display, 2003, 19(6): 12–17

    Google Scholar 

  4. Gleskova H, Cheng I C, Wagner S. Mechanics of thin-film transistors and solar cells on flexible substrates. Sol Energ, 2006, 80(6): 687693

    Google Scholar 

  5. Lumelsky V J, Shur M S, Wagner S. Sensitive skin. IEEE Sens J, 2001, 1(1): 41–51

    Article  Google Scholar 

  6. Xiang Y, Li T, Suo Z, et al. High ductility of a metal film adherent on a polymer substrate. Appl Phys Lett, 2005, 87(16): 161910/3

    Google Scholar 

  7. Niu R M, Liu G, Wang C, et al. Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl Phys Lett, 2007, 90(16): 161907/3

    Google Scholar 

  8. Keller R R, Phelps J M, Read D T. Tensile and fracture behavior of freestanding copper films. Mat Sci Eng A, 1996, 214,(1–2): 42–52

    Article  Google Scholar 

  9. Alaca B E, Saif M T A, Sehitoglu H. On the interface debond at the edge of a thin film on a thick substrate. Acta Mater, 2002, 50(5): 1197–1209

    Article  Google Scholar 

  10. Li T, Huang Z Y, Suo Z, et al. Stretchability of thin metal films on elastomer substrates. Appl Phys Lett, 2004, 85(16): 3435–3437

    Article  Google Scholar 

  11. Lee H-J, Zhang P, Bravman J C. Tensile failure by grain thinning in micromachined aluminum thin films. J Appl Phys, 2003, 93(3): 1443–1451

    Article  Google Scholar 

  12. Read D T, Dally J W. A new method for measuring the strength and ductility of thin films. J Mater Res, 1993, 8(7): 1542–1549

    Article  Google Scholar 

  13. Baker S P. Plastic deformation and strength of materials in small dimensions. Mat Sci Eng A, 2001, 319-321: 16–23

    Article  Google Scholar 

  14. Vinci R P, Baker S P. Mechanical properties in small dimensions. MRS Bull, 2002, 27(1): 12–17

    Google Scholar 

  15. Arzt E. Size effects in materials due to microstructural and dimensional constraints. Acta Mater, 1998, 46(16): 5611–5626

    Article  Google Scholar 

  16. Espinosa H D, Berbenni S, Panico M, et al. An interpretation of size-scale plasticity in geometrically confined systems. PNAS, 2005, 102(47): 16933–16938

    Article  Google Scholar 

  17. Li T, Suo Z. Deformability of thin metal films on elastomer substrates. Inter J Solids Struct, 2006, 43(7–8): 2351–2363

    Article  MATH  Google Scholar 

  18. Tsui T Y, McKerrow A J, Vlassak J J. Constraint effects on thin film channel cracking behavior. J Mater Res, 2005, 20(9): 2266–2273

    Article  Google Scholar 

  19. Cairns D R, Witte II R P, Sparacin D K, et al. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl Phys Lett, 2000, 76(11): 1425–1427

    Article  Google Scholar 

  20. Zhang G P, Zhu X F, Tan J, et al. Origin of cracking in nanoscale Cu/Ta multilayers. Appl Phys Lett, 2006, 89(4): 041920/3

    Google Scholar 

  21. Venkatraman R, Bravman J C. Separation of film thickness and grain boundary strengthening effects in Al thin films on Si. J Mater Res, 1992, 7(8): 2040–2048

    Article  Google Scholar 

  22. Keller R-M, Baker S P, Arzt E. Quantitative analysis of strengthening mechanisms in thin Cu films: effects of film thickness grain size and passivation. J Mater Res, 1998, 13(5): 1307–1317

    Article  Google Scholar 

  23. Hommel M, Kraft O. Deformation behavior of thin copper films on deformable substrates. Acta Mater, 2001, 49: 3935–3947

    Article  Google Scholar 

  24. Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films. Acta Mater, 2003, 51(1): 195–206

    Article  Google Scholar 

  25. Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity. J Mech Phys Solids, 2001, 49(10): 2245–2271

    Article  MATH  Google Scholar 

  26. Greer J R, Nix W D. Size dependence of mechanical properties of gold at the sub-micron scale. Appl Phys A, 2005, 80(8): 1625–1629

    Article  Google Scholar 

  27. Lu X M, Xia Y N. Buckling down for flexible electronics. Nature Nano Tech, 2006, 1: 163–164

    Article  Google Scholar 

  28. Lacour S P, Chan D, Wagner S. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl Phys Lett, 2006, 88(20): 204103/3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2004CB619303), the 111 Project of China (Grant No. B06025), and the Science and Technology Key Project from Ministry of Education of China (Grant Nos. 02182, 03182)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, R., Liu, G., Ding, X. et al. Ductility of metal thin films in flexible electronics. Sci. China Ser. E-Technol. Sci. 51, 1971–1979 (2008). https://doi.org/10.1007/s11431-008-0118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0118-5

Keywords

Navigation