Skip to main content
Log in

In situ preparation of nanoparticles/polymer composites

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Nanoparticle (NP) is the matter between molecule and bulk material. It has attracted much attention in catalysis, optoelectronics and biology due to its unique physical and chemical properties. Incorporation of these NPs into the polymer matrix is one of the best methods to display their special functions, which not only stabilize the NPs but also realize the functional assembly of NPs and polymers. However, realization of this idea depends largely on the compatibility of NPs and polymers as well as the interaction between them. Therefore, many methods have been developed to prepare the composites of NPs and polymers in order to obtain the function expected. In this review, we mainly focus on the combination of in situ method with other methods to synthesize different functional one-dimension, two-dimension as well as bulk composites, which has been recently developed by our group. The most striking character of our method is the excellent compatibility between NPs and polymers which ensures a homogeneous distribution of NPs in the polymer matrix. The existence of the polymer network makes the NPs more stable, and is significant for displaying their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jr M B, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013–2016

    Article  Google Scholar 

  2. Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018

    Article  Google Scholar 

  3. Henglein A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev, 1989, 89(8): 1861–1873

    Article  Google Scholar 

  4. Steigerwald M L, Brus L E. Semiconductor crystallites: A class of large molecules. Acc Chem Res, 1990, 23(6): 183–188

    Article  Google Scholar 

  5. Wang Y. Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc Chem Res, 1991, 24(5): 133–139

    Article  Google Scholar 

  6. Schmid G. Large clusters and colloids—Metals in the embryonic state. Chem Rev, 1992, 92(8): 1709–1727

    Article  Google Scholar 

  7. Linsebigler A L, Lu G Q, Jr J T Y. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev, 1995, 95(3): 735–758

    Article  Google Scholar 

  8. Schroedter A, Weller H, Eritja R, et al. Biofunctionalization of silica-coated CdTe and Gold nanocrystals. Nano Lett, 2002, 2(12): 1363–1367

    Article  Google Scholar 

  9. Wang S P, Mamedova N, Kotov N A, et al. Antigen/antibody immuncomplex from CdTe nanoparticle bioconjugates. Nano Lett, 2002, 2(8): 817–822

    Article  Google Scholar 

  10. Zhang H, Wang L P, Xiong H M, et al. Hydrothermal synthesis for high-quality CdTe Nanocrystals. Adv Mater, 2003, 15(20): 1712–1715

    Article  Google Scholar 

  11. Zhang H, Wang D Y, Yang B, et al. Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures. J Am Chem Soc, 2006, 128(31): 10171–10180

    Article  Google Scholar 

  12. El-Boubbou K, Gruden C, Huang X F. Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc, 2007, 129(44): 13392–13393

    Article  Google Scholar 

  13. Xiong S L, Xi B J, Wang C M, et al. Tunable synthesis of various Wurtzite ZnS architectural structures and their photocatalytic properties. Adv Funct Mater, 2007, 17(15): 2728–2738

    Article  Google Scholar 

  14. Zhao X K, Xu S Q, Fendler J H. Ultrasmall magnetic particles in Langmuir-Blodgett films. J Phys Chem, 1990, 94(6): 2573–2581

    Article  Google Scholar 

  15. Majetich S A, Carter A C. Surface effects on the optical properties of cadmium selenide quantum dots. J Phys Chem, 1993, 97(34): 8727–8731

    Article  Google Scholar 

  16. Quaroni L, Chumanov G. Preparation of polymer-coated functionalized silver nanoparticles. J Am Chem Soc, 1999, 121(45): 10642–10643

    Article  Google Scholar 

  17. Sondi I, Fedynyshyn T H, Sinta R, et al. Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir, 2000, 16(23): 9031–9034

    Article  Google Scholar 

  18. Corbierre M K, Cameron N S, Sutton M, et al. Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc, 2001, 123(42): 10411–10412

    Article  Google Scholar 

  19. Dabbousi B O, Bawendi M G, Onitsuka O, et al. Electroluminescence from CdSe quantum-dot/polymer composites. Appl Phys Lett, 1995, 66(11): 1316–1318

    Article  Google Scholar 

  20. Winiarz J G, Zhang L M, Lal M, et al. Photogeneration, charge transport and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. Chem Phys, 1999, 245: 417–428

    Article  Google Scholar 

  21. Huynh W U, Peng X G, Alivisatos A P. CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices. Adv Mater, 1999, 11(11): 923–927

    Article  Google Scholar 

  22. Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science, 2002, 295(5559): 1506–1508

    Article  Google Scholar 

  23. Sun H Z, Tong C Y, Zhang W, et al. Studies on principle of room temperature resistivity of polyethylene/polyacenic semiconductor composites. Chem J Chin Univer, 2004, 25(6): 1153–1155

    Google Scholar 

  24. Kuila B K, Garai A, Nandi A K. Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly (3-hexylthiophene) nanocomposites: Enhanced luminescence property in the nanocomposite thin films. Chem Mater, 2007, 19(22): 5443–5452

    Article  Google Scholar 

  25. Lin Y Y, Chen C W, Chang J, et al. Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials. Nanotechnology, 2006, 17: 1260–1263

    Article  Google Scholar 

  26. Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232–1237

    Article  Google Scholar 

  27. Gao M Y, Zhang X, Yang B, et al. A monolayer of PbI2 nanoparticles adsorbed on MD-LB film. J Chem Soc, 1994. 2229–2230

  28. Gao M Y, Gao M L, Zhang X, et al. Constructing PbI2 Nanoparticles in a monolayer structure using the molecular deposition (MD) method. J Chem Soc, 1994. 2777–2778

  29. Wang T C, Rubner M F, Cohen R E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: Controlling metal concentration and nanoparticle size. Langmuir, 2002, 18(8): 3370–3375

    Article  Google Scholar 

  30. Joly S, Kane R, Radzilowski L, et al. Multilayer nanoreactors for metallic and semiconducting particles. Langmuir, 2000, 16(3): 1354–1359

    Article  Google Scholar 

  31. Correa-Duarte M A, Giersig M, Kotov N A, et al. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation. Langmuir, 1998, 14(22): 6430–6435

    Article  Google Scholar 

  32. Zhang H, Zhou Z, Liu K, et al. Controlled assembly of fluorescent multilayers from an aqueous solution of CdTe nanocrystals and nonionic carbazole-containing copolymer. J Mater Chem, 2003, 13(6): 1356–1361

    Article  Google Scholar 

  33. Gao M Y, Sun J Q, Dulkeith E, et al. Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method. Langmuir, 2002, 18(10): 4098–4102

    Article  Google Scholar 

  34. Gao M Y, Lesser C, Kirstein S, et al. Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. J Appl Phys, 2000, 87(5): 2297–2302

    Article  Google Scholar 

  35. Sankaran V, Cummins C C, Schrock R R, et al. Small PbS clusters prepared via ROMP block copolymer technology. J Am Chem Soc, 1990, 112(19): 6858–6859

    Article  Google Scholar 

  36. Sankaran V, Yue J, Cohen R E, et al. Synthesis of zinc sulfide clusters and zinc particles within microphase-separated domains of organometallic block copolymers. Chem Mater, 1993, 5(8): 1133–1142

    Article  Google Scholar 

  37. Moffitt M, McMahon L, Pessel V, et al. Size control of nanoparticles in semiconductor-polymer composites. Chem Mater, 1995, 7(6): 1185–1192

    Article  Google Scholar 

  38. Karanikolos G N, Law N L, Mallory R, et al. Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates. Nanotechnology, 2006, 17: 3121–3128

    Article  Google Scholar 

  39. Lo C T, Lee B, Winans R E, et al. Effect of dispersion of inorganic nanoparticles on the phase behavior of block copolymers in a selective solvent. Macromolecules, 2006, 39(19): 6318–6320

    Article  Google Scholar 

  40. Yun S H, Sohn B H, Jung J C, et al. Micropatterning of a single layer of nanoparticles by lithographical methods with diblock copolymer micelles. Nanotechnology, 2006, 17: 450–454

    Article  Google Scholar 

  41. Li C P, Wei K H, Huang J Y. Enhanced collective electron transport by CdSe quantum dots confined in the poly (4-vinylpyridine) nanodomains of a poly (styrene-b-4-vinylpyridine) diblock copolymer thin film. Angew Chem Int Ed, 2006, 45(9): 1449–1453

    Article  Google Scholar 

  42. Zhang H, Wang C L, Li M J, et al. Fluorescent nanocrystal-polymer complexes with flexible processability. Adv Mater, 2005, 17(7): 853–857

    Article  Google Scholar 

  43. Sun H Z, Zhang J H, Tian Y, et al. Multifunctional composites obtained by incorporating nanocrystals into decorated PVK polymers. J Nanomater, 2007, doi:10.1155/2007/38589

  44. Sun H Z, Zhang J H, Zhang H, et al. Preparation of carbazole-containing amphiphilic copolymers: An efficient method for the incorporation of functional nanocrystals. Macromol Mater Eng, 2006, 291(8): 929–936

    Article  Google Scholar 

  45. Sun H Z, Zhang J H, Zhang H, et al. Pure white-light emission of nanocrystal-polymer composites. Chem Phys Chem, 2006, 7(12): 2492–2496

    Google Scholar 

  46. Sun H Z, Zhang H, Zhang J H, et al. Effect of electrostatic interaction on the photophysical properties of the composites of CdTe nanocrystals and carbazole-containing polymers. J Phys Chem C, 2008, 112: 2317–2324

    Article  Google Scholar 

  47. Gorelikov I, Kumacheva E. Electrodeposition of polymer-semiconductor nanocomposite films. Chem Mater, 2004, 16(21): 4122–4127

    Article  Google Scholar 

  48. Sorensen L, Strouse G F, Stiegman A E. Fabrication of stable low-density silica aerogels containing luminescent ZnS capped CdSe quantum dots. Adv Mater, 2006, 18(15): 1965–1967

    Article  Google Scholar 

  49. Ni Y H, Hao H Q, Cao X F, et al. Preparation, characterization, and optical, electrochemical property research of CdS/PAM nanocomposites. J Phys Chem B, 2006, 110(35): 17347–17352

    Article  Google Scholar 

  50. Wang S H, Yang S H, Yang C L, et al. Poly (N-vinylcarbazole) (PVK) photoconductivity enhancement induced by doping with CdS nanocrystals through chemical hybridization. J Phys Chem B, 2000, 104(50): 11853–11858

    Article  Google Scholar 

  51. Sheng W C, Kim S, Lee J, et al. In-situ encapsulation of quantum dots into polymer microspheres. Langmuir, 2006, 22(8): 3782–3790

    Article  Google Scholar 

  52. Park J H, Park O O. Photorefractive properties in poly (N-vinylcarbazole)/CdSe nanocomposites through chemical hybridization. Appl Phys Lett, 2006, 89: 193101

    Google Scholar 

  53. Chen X, Yu Z T, Chen J S, et al. In-situ hydrothermal preparation of CdS/polymer composite particles with cadmium-containing polymer latexes. Mater Lett, 2004, 58(3–4): 384–386

    Article  Google Scholar 

  54. Beecroft L L, Ober C K. Nanocomposite materials for optical applications. Chem Mater, 1997, 9(6): 1302–1317

    Article  Google Scholar 

  55. Liang X R, Tan S S, Tang Z Y, et al. Investigation of transversal conductance in semiconductor CdTe Nanowires with and without a coaxial silica shell. Langmuir, 2004, 20(4): 1016–1020

    Article  Google Scholar 

  56. Fan H M, Ni Z H, Feng Y P, et al. Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires. Appl Phys Lett, 2007, 91: 171911

    Google Scholar 

  57. Pan A L, Yang H, Yu R C, et al. Fabrication and photoluminescence of high-quality ternary CdSSe nanowires and nanoribbons. Nanotechnology, 2006, 17: 1083–1086

    Article  Google Scholar 

  58. He J H, Lin Y H, McConney M E, et al. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization. J Appl Phys, 2007, 102: 084303

    Google Scholar 

  59. Martinson A B F, Elam J W, Hupp J T, et al. ZnO nanotube based dye-sensitized solar cells. Nano Lett, 2007, 7(8): 2183–2187

    Article  Google Scholar 

  60. Thurn-Albrecht T, Schotter J, Kästle G A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science, 2000, 290(5499): 2126–2129

    Article  Google Scholar 

  61. Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2(2): 165–168

    Article  MATH  Google Scholar 

  62. Yang P D, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater, 2002, 12(5): 323–331

    Article  Google Scholar 

  63. Zach M P, Ng K H, Penner R M. Molybdenum nanowires by electrodeposition. Science, 2000, 290(5499): 2120–2123

    Article  Google Scholar 

  64. Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun, 2001: 617–618

  65. Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457): 1471–1473

    Article  Google Scholar 

  66. Cui T Y, Cui F, Zhang J H, et al. From monomeric nanofibers to PbS nanoparticles/polymer composite nanofibers through the combined use of γ-irradiation and gas/solid reaction. J Am Chem Soc, 2006, 128(19): 6298–6299

    Article  Google Scholar 

  67. Xuan Y, Pan D C, Zhao N N, et al. White electroluminescence from a poly (N-vinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots. Nanotechnology, 2006, 17: 4966–4969

    Article  Google Scholar 

  68. Zimnitsky D, Jiang C Y, Xu J, et al. Photoluminescence of a freely suspended monolayer of quantum dots encapsulated into layer-by-layer films. Langmuir, 2007, 23(20): 10176–10183

    Article  Google Scholar 

  69. Crespilho F N, Zucolotto V, Brett C M A, et al. Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B, 2006, 110(35): 17478–17483

    Article  Google Scholar 

  70. Patten T E, Xia J H, Abernathy T, et al. Polymers with very low polydispersities from atom transfer radical polymerization. Science, 1996, 272(5263): 866–868

    Article  Google Scholar 

  71. An L J, Li Z Q, Wang Z, et al. Bifunctional Fe3O4/CdS nanocomposites synthesized by surface-initiated atom transfer radical polymerization. Chem Lett, 2005, 34(5): 652–653

    Article  Google Scholar 

  72. An L J, Li Z Q, Wang Y P, et al. Synthesis of Fe3O4/PMMA nanocomposite particles by surface-initiated ATRP and characterization. Chem J Chin Univer, 2006, 27(7): 1372–1375

    Google Scholar 

  73. Wang J Y, Chen W, Liu A H, et al. Controlled fabrication of cross-linked nanoparticles/polymer composite thin films through the combined use of surface-initiated atom transfer radical polymerization and gas/solid reaction. J Am Chem Soc, 2002, 124(45): 13358–13359

    Article  Google Scholar 

  74. Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95(1): 69–96

    Article  Google Scholar 

  75. Okubo T, Kohmoto S, Yamamoto M. Synthesis, characterization, and optical properties of polymers comprising 1, 4-dithiane-2, 5-bis(thiomethyl) group. J Appl Polym Sci, 1998, 68(11): 1791–1799

    Article  Google Scholar 

  76. Lü C L, Cui Z C, Guan C, et al. Research on preparation, structure and properties of TiO2/polythiourethane hybrid optical films with high refractive index. Macromol Mater Eng, 2003, 288(9): 717–723

    Article  Google Scholar 

  77. Guan C, Lü C L, Liu Y F, et al. Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. J Appl Polym Sci, 2006, 102(2): 1631–1636

    Article  Google Scholar 

  78. Durrani S M A, Al-Shukri A M, Iob A, et al. Optical constants of zinc sulfide films determined from transmittance measurements. Thin Solid Films, 2000, 379: 199–202

    Article  Google Scholar 

  79. Lü C L, Cui Z C, Li Z, et al. High refractive index thin films of ZnS/ polythiourethane. J Mater Chem, 2003, 13: 526–530

    Article  Google Scholar 

  80. Lü C L, Cui Z C, Wang Y, et al. Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J Mater Chem, 2003, 13: 2189–2195

    Article  Google Scholar 

  81. Lü C L, Guan C, Liu Y F, et al. PbS/Polymer nanocomposite optical materials with high refractive index. Chem Mater, 2005, 17(9): 2448–2454

    Article  Google Scholar 

  82. Sun J Q, Hao E C, Zhang X, et al. Multilayer assemblies of colloidal ZnS doped with silver and polyeletrolytes based on electrostatic interaction. The Solid Films, 1998, 327–329, 528–531

    Article  Google Scholar 

  83. Zhang J H, Bai L T, Zhang K, et al. A novel method for the layer-by-layer assembly of metal nanoparticles transported by polymer microspheres. J Mater Chem, 2003, 13(3): 514–517

    Article  MathSciNet  Google Scholar 

  84. Gao J F, Lü C L, Lü X D, et al. A phen-functionalized nanoparticles-polymer fluorescent nanocomposites via ligand exchange and in situ bulk polymerization. J Mater Chem, 2007, 17(43): 4591–4597

    Article  Google Scholar 

  85. Lü C L, Cheng Y R, Liu Y F, et al. A facile route to ZnS-polymer nanocomposite optical materials with high nanophase content via γ-ray irradiation initiated bulk polymerization. Adv Mater, 2006, 18(9): 1188–1192

    Article  Google Scholar 

  86. Huang J M, Yang Y, Yang B, et al. Synthesis of the CdS nanoparticles in polymer networks. Polym Bull, 1996, 36(3): 337–340

    Article  Google Scholar 

  87. Huang J M, Yang Y, Yang B, et al. Preparation and characterization of Cd2S/CdS/ZnS nanocomposites in polymeric materials. Polym Bull, 1996, 37(5): 679–682

    Article  Google Scholar 

  88. Gao M Y, Yang Y, Yang B, et al. Effect of the surface chemical modification on the optical properties of polymer-stabilized PbS nanoparticles. J Chem Soc, Faraday Trans, 1995, 91(22): 4121–4125

    Article  Google Scholar 

  89. Gao M Y, Yang Y, Yang B, et al. Synthesis of PbS nanoparticles in polymer matrices. J Chem Soc, 1994. 2779–2780

  90. Hao E C, Wang L Y, Zhang J H, et al. Fabrication of polymer/inorganic nanoparticles composite films based on coordinative bonds. Chem Lett, 1999, 5–6

  91. Zhang H, Cui Z C, Wang Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactant. Adv Mater, 2003, 15(10): 777–780

    Article  Google Scholar 

  92. Yan B, Qiao X F. Rare-earth/inorganic/organic polymeric hybrid materials: Molecular assembly, reguar microstructure and photoluminescence. J Phys Chem B, 2007, 111(43): 12362–12374

    Article  Google Scholar 

  93. Wang D M, Zhang J H, Lin Q, et al. Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. J Mater Chem, 2003, 13(9): 2279–2284

    Article  Google Scholar 

  94. Huang J M, Yang B, Huang D, et al. Core-shell nanoparticles reinforced polystyrene with no effect on its transparency. Int J Polymeric Mater, 1997, 35: 13–19

    Article  Google Scholar 

  95. Yang Y H, Wen Z K, Dong Y P, et al. Incorporating CdTe nanocrystals into polystyrene microspheres: Towards robust fluorescent beads. Small, 2006, 2(7): 898–901

    Article  Google Scholar 

  96. Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed, 2006, 45(5): 813–816

    Article  Google Scholar 

  97. Hu Y H, Litwin T, Nagaraja A R, et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett, 2007, 7(10): 3056–3064

    Article  Google Scholar 

  98. Cui T Y, Zhang J H, Wang J Y, et al. CdS-Nanoparticle/polymer composite shells grown on silica nanospheres by atom transfer radical polymerization. Adv Funct Mater, 2005, 15(3): 481–486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Yang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 2007CB936402, 20534040) and Science Foundation for Young Teachers of Northeast Normal University (Grant No. 20070306)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Yang, B. In situ preparation of nanoparticles/polymer composites. Sci. China Ser. E-Technol. Sci. 51, 1886–1901 (2008). https://doi.org/10.1007/s11431-008-0109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0109-6

Keywords

Navigation