Skip to main content
Log in

New direction of computational fluid dynamics and its applications in industry

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

For the past ten years there has been much progress in computational fluid dynamics (CFD), among which the formation and development of the lattice Boltzmann method (LBM) are an important new direction. We give a review on the main aspect and the latest development of this method in this article, and at the same time we also discuss the related development of scientific software and its impact on the real-world applications in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilcox D. Turbulence modeling for CFD. DCW Industries, Inc, 1993

  2. Chen H, Kandasamy S, Orszag S, et al. Extended boltzmann kinetic equation for turbulent flows. Science, 2003. 301–633

  3. Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation. Phys Rev, 1986, 56: 1505

    Google Scholar 

  4. Wolfram S. Cellular automaton fluid 1. Basic theory. J Stat Phys, 1986, 45: 471–526

    Article  MATH  MathSciNet  Google Scholar 

  5. McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett, 1988, 61: 2332

    Article  Google Scholar 

  6. Chen S, Chen H, Martinez D, et al. Lattice Boltzmann model for simulation of magneto hydrodynamics. Phys Rev, 1991, 67: 3776

    Google Scholar 

  7. Chen H, Chen S, Matthaeus W H. Recovery of Navier-Stokes equations using a lattice-gas Boltzmann method. Phys Rev A, 1992, 45: R5339–R5342

    Article  Google Scholar 

  8. Qian Y H, d’Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys Lett, 1992, 17: 479–484

    Article  MATH  Google Scholar 

  9. Bhatnagar P, Gross E, Krook M. A model for collision processes in gases. I. small amplitude processes in charged and neu-tral one-component system. Phys Rev, 1954, 94: 511–525

    Article  MATH  Google Scholar 

  10. Grad H. On the kinetic theory of rarefied gases. Commun Pure Appl Math, 1949, 2: 331

    Article  MATH  MathSciNet  Google Scholar 

  11. Shan X, He X. Discretization of the velocity space in solution of the Boltzmann equation. Phys Rev, 1998, 80: 65

    Google Scholar 

  12. Shan X, Yuan X F, Chen H. Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J Fluid Mech, 2006, 550: 413

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang R, Shan X, Chen H. Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation. Phys Rev E, 2006, 74: 046703

    Google Scholar 

  14. Shan X, Chen H. A general multiple-relaxation-time Boltzmann collision model. Int J Mod Phys, C, 2007 (to appear)

  15. Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E, 1993, 47: 1815–1819

    Article  Google Scholar 

  16. Shan X, Chen H. Simulation of non-ideal gases and liquid-gas phase transitions by lattice Boltzmann equation. Phys Rev E, 1994, 49: 2941–2948

    Article  Google Scholar 

  17. Chen S, Doolen G. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech, 1998, 30: 329–364

    Article  MathSciNet  Google Scholar 

  18. Li Y, Shock R, Zhang R, et al. Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method. J Fluid Mech, 2004, 519: 273

    Article  MATH  Google Scholar 

  19. Chen H, Teixeira C, Molvig K. Realization of fluid boundary conditions via discrete Boltzmann dynamics. Intl J Mod Phys, 1998, 9(8): 1281

    Article  Google Scholar 

  20. Cercignani C. Theory and Application of the Boltzmann Equation. Scottish: Elsevier, 1975

    MATH  Google Scholar 

  21. Chen H, Orszag S, Staroselsky I. Macroscopic description of arbitrary Knudsen number flow using Boltzmann-BGK kinetic theory. J Fluid Mech, 2007, 574: 495

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen H, Orszag S, Staroselsky, I et al. Expanded analogy between kinetic theory of fluids and turbulence. J Fluid Mech, 2004, 519: 307

    Article  MathSciNet  Google Scholar 

  23. Succi S, Karlin I, Chen H. Role of the H theorem in lattice Boltzmann hydrodynamic simulations. Rev Mod Phys, 2002, 74(4): 1203

    Article  Google Scholar 

  24. Li X, Zhang X, Wang Y, et al. Lattice Boltzmann method used for the aircraft characteristics computation with high angle attack. Acta Aerod Sinica, 2007, 25 (accepted)

  25. Wu J, Fan Z, He Z, et al. Research on the tests technology at high angles of attack in 2. 4m transonic wind tunnel. Exp & Meas in Fluid Mech, 2004, 18(4): 43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen YaoSong.

Additional information

Recommended by Prof. GU SongFen, Member of Editorial Committer of Science in China, Series E: Technological Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Shan, X. & Chen, H. New direction of computational fluid dynamics and its applications in industry. SCI CHINA SER E 50, 521–533 (2007). https://doi.org/10.1007/s11431-007-0075-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-007-0075-4

Keywords

Navigation