Skip to main content
Log in

Mars exploration—In situ K-Ar dating of jarosite

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

To accurately determine the chronological framework of climatic variations recorded by various Martian terrains, the absolute ages of Martian events and cratering rate need to be constrained by either in situ dating or returned samples. In situ K-Ar dating is currently a more plausible dating technique as compared with sample return. Jarosite (KFe3[SO4]2[OH]6) is the only confirmed K sulfate mineral that is widely present on Mars, as indicated by in situ detection, orbital remote sensing, and meteorite studies. Jarosite can be used for precise K-Ar and 40Ar/39Ar dating. The preservation of jarosite on Mars provides information about the nature and duration of aqueous processes on the Martian surface. Different ages of Martian jarosite represent the key to constraining the transition from Martian surface water activity to arid climatic conditions. This paper summarizes recent advances in our knowledge of the spatial distribution of Martian jarosite, its mineralogical properties and stability on Mars, the Ar diffusion kinetics of jarosite, and the current status of in situ K-Ar dating. Moreover, we examine the key scientific issues to be addressed for in situ K-Ar dating of jarosite and Martian sample return missions, and discuss future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson R B, Bell J F. 2010. Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars, 5: 76–128

    Article  ADS  Google Scholar 

  • Andrews-Hanna J C, Phillips R J, Zuber M T. 2007. Meridiani Planum and the global hydrology of Mars. Nature, 446: 163–166

    Article  ADS  CAS  PubMed  Google Scholar 

  • Baccolo G, Delmonte B, Niles P B, Cibin G, Di Stefano E, Hampai D, Keller L, Maggi V, Marcelli A, Michalski J, Snead C, Frezzotti M. 2021. Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nat Commun, 12: 436

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Barron V, Torrent J, Greenwood J P. 2006. Transformation of jarosite to hematite in simulated Martian brines. Earth Planet Sci Lett, 251: 380–385

    Article  ADS  CAS  Google Scholar 

  • Brophy G P, Scott E S, Snellgrove R A. 1962. Sulfate studies II. Solid solution between alunite and jarosite. Am Miner, 47: 112–126

    CAS  Google Scholar 

  • Burns R G. 1993. Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars. Geochim Cosmochim Acta, 57: 4555–4574

    Article  ADS  CAS  Google Scholar 

  • Carr M H. 2007. The Surface of Mars. NewYork: Cambridge University Press. 296

    Book  Google Scholar 

  • Cassata W S, Renne P R. 2013. Systematic variations of argon diffusion in feldspars and implications for thermochronometry. Geochim Cosmochim Acta, 112: 251–287

    Article  ADS  CAS  Google Scholar 

  • Cho Y, Sugita S, Miura Y N, Okazaki R, Iwata N, Morota T, Kameda S. 2016. An in-situ K-Ar isochron dating method for planetary landers using a spot-by-spot laser-ablation technique. Planet Space Sci, 128: 14–29

    Article  ADS  CAS  Google Scholar 

  • Cohen B A, Malespin C A, Farley K A, Martin P E, Cho Y, Mahaffy P R. 2019. In situ geochronology on Mars and the development of future instrumentation. Astrobiology, 19: 1303–1314

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Doran P T, Clifford S M, Forman S L, Nyquist L, Papanastassiou D A, Stewart B W, Sturchio N C, Swindle T D, Cerling T, Kargel J, McDonald G, Nishiizumi K, Poreda R, Rice J W, Tanaka K. 2004. Mars chronology: Assessing techniques for quantifying surficial processes. Earth-Sci Rev, 67: 313–337

    Article  ADS  CAS  Google Scholar 

  • Earth Science Development Strategy Group 2021–2030. 2021. Earth Science Development Strategy 2021–2030: Past, Present and Future of a Livable Planet. Beijing: Science Press

    Google Scholar 

  • Ehlmann B L, Buz J. 2015. Mineralogy and fluvial history of the watersheds of Gale, Knobel, and Sharp craters: A regional context for the Mars Science Laboratory Curiosity’s exploration. Geophys Res Lett, 42: 264–273

    Article  ADS  Google Scholar 

  • Ehlmann B L, Mustard J F. 2012. An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophys Res Lett, 39: L11202

    Article  ADS  Google Scholar 

  • Elwood Madden M E, Bodnar R J, Rimstidt J D. 2004. Jarosite as an indicator of water-limited chemical weathering on Mars. Nature, 431: 821–823

    Article  ADS  CAS  Google Scholar 

  • Elwood Madden M E, Madden A S, Rimstidt J D. 2009. How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology, 37: 635–638

    Article  ADS  Google Scholar 

  • Farley K A, Hurowitz J A, Asimow P D, Jacobson N S, Cartwright J A. 2013. A double-spike method for K-Ar measurement: A technique for high precision in situ dating on Mars and other planetary surfaces. Geochim Cosmochim Acta, 110: 1–12

    Article  ADS  CAS  Google Scholar 

  • Farley K A, Malespin C, Mahaffy P, Grotzinger J P, Vasconcelos P M, Milliken R E, Malin M, Edgett K S, Pavlov A A, Hurowitz J A, et al. 2014. In situ radiometric and exposure age dating of the Martian surface. Science, 343: 1247166

    Article  CAS  PubMed  Google Scholar 

  • Farrand W H, Glotch T D, RiceJr. J W, Hurowitz J A, Swayze G A. 2009. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus, 204: 478–488

    Article  ADS  CAS  Google Scholar 

  • Glotch T D, Christensen P R. 2005. Geologic and mineralogic mapping of Aram Chaos: Evidence for a water-rich history. J Geophys Res, 110: E09006

    ADS  Google Scholar 

  • Grotzinger J P, Gupta S, Malin M C, Rubin D M, Schieber J, Siebach K, Sumner D Y, Stack K M, Vasavada A R, Arvidson R E, Calef Iii F, Edgar L, Fischer W F, Grant J A, Griffes J, Kah L C, Lamb M P, Lewis K W, Mangold N, Minitti M E, Palucis M, Rice M, Williams R M E, Yingst R A, Blake D, Blaney D, Conrad P, Crisp J, Dietrich W E, Dromart G, Edgett K S, Ewing R C, Gellert R, Hurowitz J A, Kocurek G, Mahaffy P, McBride M J, McLennan S M, Mischna M, Ming D, Milliken R, Newsom H, Oehler D, Parker T J, Vaniman D, Wiens R C, Wilson S A. 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 350: 7575

    Article  ADS  Google Scholar 

  • Grotzinger J P, Sumner D Y, Kah L C, Stack K, Gupta S, Edgar L, Rubin D, Lewis K, Schieber J, Mangold N, et al. 2014. A habitable fluviolacustrine environment at Yellowknife Bay, Gale crater, Mars. Science, 343: 1242777

    Article  CAS  PubMed  Google Scholar 

  • Haberle R M, Joshi M M, Murphy J R, Barnes J R, Schofield J T, Wilson G, Lopez-Valverde M, Hollingsworth J L, Bridger A F C, Schaeffer J. 1999. General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J Geophys Res, 104: 8957–8974

    Article  ADS  Google Scholar 

  • Hartmann W K, Neukum G. 2001. Cratering chronology and the evolution of Mars. Space Sci Rev, 96: 165–194

    Article  ADS  Google Scholar 

  • Hartmann W K. 1968. Lunar crater counts. VI: The young craters Tycho, Aristarchus, and Copernicus. Communication of Lunar and Planetary Laboratory, 8: 145–156

    ADS  Google Scholar 

  • Hartmann W K. 1970. Preliminary note on lunar cratering rates and absolute time-scales. Icarus, 12: 131–133

    Article  ADS  Google Scholar 

  • Hartmann W K. 2005. Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus, 174: 294–320

    Article  ADS  Google Scholar 

  • Hyuga H, Cho Y, Sugita S. 2023. Analytical capability of K-Ar isochron dating on Mars: Assessment from mineral compositions of Martian meteorites. arXiv: Astrophysics: Earth Planet Astrophys

  • King P L, McSweenJr H Y. 2005. Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. J Geophys Res, 110: E12S10

    Google Scholar 

  • Kong W G, Zheng M P. 2014. Importance of salt studies in planetary science (in Chinese). Sci Technol Rev, 32: 15–21

    Google Scholar 

  • Kong W G, Zheng M P. 2017. Progresses of studies on Mars salts (in Chinese). Sci Technol Rev, 35: 84–87

    Google Scholar 

  • Kula J, Baldwin S L. 2011. Jarosite, argon diffusion, and dating aqueous mineralization on Earth and Mars. Earth Planet Sci Lett, 310: 314–318

    Article  ADS  CAS  Google Scholar 

  • Le Deit L, Mangold N, Forni O, Cousin A, Lasue J, Schröder S, Wiens R C, Sumner D, Fabre C, Stack K M, Anderson R B, Blaney D, Clegg S, Dromart G, Fisk M, Gasnault O, Grotzinger J P, Gupta S, Lanza N, Le Mouélic S, Maurice S, McLennan S M, Meslin P, Nachon M, Newsom H, Payré V, Rapin W, Rice M, Sautter V, Treiman A H. 2016. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity. J Geophys Res-Planets, 121: 784–804

    Article  ADS  CAS  Google Scholar 

  • Ling Z C, Liu C Q, Bai H C, Tian S K, Shi E B, Liu P, Xin Y Q, Wu Z C, Fu X H, Zhang L, Zhang J. 2022. Recent advances on the LIBS studies of Martian surface materials (in Chinese). Bull Mineral Petrol Geochem, 41: 92–112

    Google Scholar 

  • Liu Y, Goudge T A, Catalano J G, Wang A. 2018. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars. Icarus, 302: 62–79

    Article  ADS  CAS  Google Scholar 

  • Long X, Jiang W, Yanan D, Cheng Z Y, Huang T, Zhao J N, Xu Y, Huang J, Xiao Z Y, Komatsu G. 2017. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Sci Rev, 164: 84–101

    Article  ADS  Google Scholar 

  • Mahaffy P R, Webster C R, Cabane M, Conrad P G, Coll P, Atreya S K, Arvey R, Barciniak M, Benna M, Bleacher L, Brinckerhoff W B, Eigenbrode J L, Carignan D, Cascia M, Chalmers R A, Dworkin J P, Errigo T, Everson P, Franz H, Farley R, Feng S, Frazier G, Freissinet C, Glavin D P, Harpold D N, Hawk D, Holmes V, Johnson C S, Jones A, Jordan P, Kellogg J, Lewis J, Lyness E, Malespin C A, Martin D K, Maurer J, McAdam A C, McLennan D, Nolan T J, Noriega M, Pavlov A A, Prats B, Raaen E, Sheinman O, Sheppard D, Smith J, Stern J C, Tan F, Trainer M, Ming D W, Morris R V, Jones J, Gundersen C, Steele A, Wray J, Botta O, Leshin L A, Owen T, Battel S, Jakosky B M, Manning H, Squyres S, Navarro-González R, McKay C P, Raulin F, Sternberg R, Buch A, Sorensen P, Kline-Schoder R, Coscia D, Szopa C, Teinturier S, Baffes C, Feldman J, Flesch G, Forouhar S, Garcia R, Keymeulen D, Woodward S, Block B P, Arnett K, Miller R, Edmonson C, Gorevan S, Mumm E. 2012. The sample analysis at Mars investigation and instrument suite. Space Sci Rev, 170: 401–478

    Article  ADS  Google Scholar 

  • Martin P E, Farley K A, Baker M B, Malespin C A, Schwenzer S P, Cohen B A, Mahaffy P R, McAdam A C, Ming D W, Vasconcelos P M, Navarro-González R. 2017. A two-step K-Ar experiment on Mars: Dating the diagenetic formation of jarosite from Amazonian groundwaters. J Geophys Res-Planets, 122: 2803–2818

    Article  ADS  CAS  Google Scholar 

  • McDougall I, Harrison T M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford: Oxford University Press. 269

    Book  Google Scholar 

  • McLennan S M, BellIii J F, Calvin W M, Christensen P R, Clark B C, de Souza P A, Farmer J, Farrand W H, Fike D A, Gellert R, Ghosh A, Glotch T D, Grotzinger J P, Hahn B, Herkenhoff K E, Hurowitz J A, Johnson J R, Johnson S S, Jolliff B, Klingelhöfer G, Knoll A H, Learner Z, Malin M C, McSweenJr. H Y, Pocock J, Ruff S W, Soderblom L A, Squyres S W, Tosca N J, Watters W A, Wyatt M B, Yen A. 2005. Provenance and diagenesis of the evaporite-bearing burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett, 240: 95–121

    Article  ADS  CAS  Google Scholar 

  • Navrotsky A, Forray F L, Drouet C. 2005. Jarosite stability on Mars. Icarus, 176: 250–253

    Article  ADS  CAS  Google Scholar 

  • Nekvasil H, DiFrancesco N J, Rogers A D, Coraor A E, King P L. 2019. Vapor-deposited minerals contributed to the Martian surface during magmatic degassing. J Geophys Res-Planets, 124: 1592–1617

    Article  ADS  CAS  Google Scholar 

  • Newsom H E, Mangold N, Kah L C, Williams J M, Arvidson R E, Stein N, Ollila A M, Bridges J C, Schwenzer S P, King P L, Grant J A, Pinet P, Bridges N T, Calef III F, Wiens R C, Spray J G, Vaniman D T, Elston W E, Berger J A, Garvin J B, Palucis M C. 2015. Gale crater and impact processes—Curiosity’s first 364 Sols on Mars. Icarus, 249: 108–128

    Article  ADS  Google Scholar 

  • Papike J J, Karner J M, Shearer C K. 2006. Comparative planetary mineralogy: Implications of martian and terrestrial jarosite. A crystal chemical perspective. Geochim Cosmochim Acta, 70: 1309–1321

    Article  ADS  CAS  Google Scholar 

  • Rampe E B, Blake D F, Bristow T F, Ming D W, Vaniman D T, Morris R V, Achilles C N, Chipera S J, Morrison S M, Tu V M, Yen A S, Castle N, Downs G W, Downs R T, Grotzinger J P, Hazen R M, Treiman A H, Peretyazhko T S, Des Marais D J, Walroth R C, Craig P I, Crisp J A, Lafuente B, Morookian J M, Sarrazin P C, Thorpe M T, Bridges J C, Edgar L A, Fedo C M, Freissinet C, Gellert R, Mahaffy P R, Newsom H E, Johnson J R, Kah L C, Siebach K L, Schieber J, Sun V Z, Vasavada A R, Wellington D, Wiens R C. 2020a. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with curiosity. Geochemistry, 80: 125605

    Article  CAS  Google Scholar 

  • Rampe E B, Bristow T F, Morris R V, Morrison S M, Achilles C N, Ming D W, Vaniman D T, Blake D F, Tu V M, Chipera S J, Yen A S, Peretyazhko T S, Downs R T, Hazen R M, Treiman A H, Grotzinger J P, Castle N, Craig P I, Des Marais D J, Thorpe M T, Walroth R C, Downs G W, Fraeman A A, Siebach K L, Gellert R, Lafuente B, McAdam A C, Meslin P Y, Sutter B, Salvatore M R. 2020b. Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin instrument. J Geophys Res-Planets, 125: e06306

    Article  Google Scholar 

  • Ren Z, Vasconcelos P M. 2020. Mechanisms and kinetics of argon diffusion in hypogene and supergene jarosites: Implications for geochronology and surficial geochemistry on Earth and Mars. Geochim Cosmochim Acta, 289: 207–224

    Article  ADS  CAS  Google Scholar 

  • Rice M S, Gupta S, Treiman A H, Stack K M, Calef F, Edgar L A, Grotzinger J, Lanza N, Le Deit L, Lasue J, Siebach K L, Vasavada A, Wiens R C, Williams J. 2017. Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars. J Geophys Res-Planets, 122: 2–20

    Article  ADS  Google Scholar 

  • Roach L H, Mustard J F, Swayze G, Milliken R E, Bishop J L, Murchie S L, Lichtenberg K. 2010. Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus, 206: 253–268

    Article  ADS  CAS  Google Scholar 

  • Schmidt M E, Campbell J L, Gellert R, Perrett G M, Treiman A H, Blaney D L, Olilla A, Calef Iii F J, Edgar L, Elliott B E, Grotzinger J, Hurowitz J, King P L, Minitti M E, Sautter V, Stack K, Berger J A, Bridges J C, Ehlmann B L, Forni O, Leshin L A, Lewis K W, McLennan S M, Ming D W, Newsom H, Pradler I, Squyres S W, Stolper E M, Thompson L, VanBommel S, Wiens R C. 2014. Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source. J Geophys Res-Planets, 119: 64–81

    Article  ADS  CAS  Google Scholar 

  • Sowe M, Wendt L, McGuire P C, Neukum G. 2012. Hydrated minerals in the deposits of Aureum Chaos. Icarus, 218: 406–419

    Article  ADS  CAS  Google Scholar 

  • Swindle T D, Bode R, Boynton W V, Kring D A, Williams M, Chutjian A, Darrach M R, Cremers D A, Wiens R C, Baldwin S L. 2003. AGE (Argon Geochronology Experiment): An instrument for in situ geochronology on the surface of Mars. Lunar Planet Sci, 1488

  • Talboys D L, Barber S, Bridges J C, Kelley S P, Pullan D, Verchovsky A B, Butcher G, Fazel A, Fraser G W, Pillinger C T, Sims M R, Wright I P. 2009. In situ radiometric dating on Mars: Investigation of the feasibility of K-Ar dating using flight-type mass and X-ray spectrometers. Planet Space Sci, 57: 1237–1245

    Article  ADS  CAS  Google Scholar 

  • Thollot P, Mangold N, Ansan V, Le Mouélic S, Milliken R E, Bishop J L, Weitz C M, Roach L H, Mustard J F, Murchie S L. 2012. Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus. J Geophys Res, 117: E00J06

    Google Scholar 

  • Thomson B J, Bridges N T, Milliken R, Baldridge A, Hook S J, Crowley J K, Marion G M, de Souza Filho C R, Brown A J, Weitz C M. 2011. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus, 214: 413–432

    Article  ADS  CAS  Google Scholar 

  • Treiman A H, Bish D L, Vaniman D T, Chipera S J, Blake D F, Ming D W, Morris R V, Bristow T F, Morrison S M, Baker M B, Rampe E B, Downs R T, Filiberto J, Glazner A F, Gellert R, Thompson L M, Schmidt M E, Le Deit L, Wiens R C, McAdam A C, Achilles C N, Edgett K S, Farmer J D, Fendrich K V, Grotzinger J P, Gupta S, Morookian J M, Newcombe M E, Rice M S, Spray J G, Stolper E M, Sumner D Y, Vasavada A R, Yen A S. 2016. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J Geophys Res-Planets, 121: 75–106

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos P M, Brimhall G H, Becker T A, Renne P R. 1994. analysis of supergene jarosite and alunite: Implications to the paleoweathering history of the western USA and West Africa. Geochim Cosmochim Acta, 58: 401–420

    Article  ADS  CAS  Google Scholar 

  • Vasconcelos P M, Farley K A, Malespin C A, Mahaffy P, Ming D, McLennan S M, Hurowitz J A, Rice M S. 2016. Discordant K-Ar and young exposure dates for the Windjana sandstone, Kimberley, Gale Crater, Mars. J Geophys Res-Planets, 121: 2176–2192

    Article  ADS  CAS  Google Scholar 

  • Vasconcelos P M. 1999a. K-Ar and 40Ar/39Ar geochronology of weathering processes. Annu Rev Earth Planet Sci, 27: 183–229

    Article  ADS  CAS  Google Scholar 

  • Vasconcelos P M. 1999b. 40Ar/39Ar geochronology of supergene processes in ore deposits. Rev Econ Geol, 12: 73–113

    Google Scholar 

  • Waltenberg K. 2012. Mineral physics and crystal chemistry of minerals suitable for weathering geochronology: Implications to 40Ar/39Ar and (U−Th)/He geochronology. Dissertation for Doctoral Degree. Brisbane: The University of Queensland

    Google Scholar 

  • Wang F, Shi W, Guillou H, Zhang W B, Yang L K, Wu L, Wang Y Z, Zhu R X. 2019. A new unspiked K-Ar dating approach using laser fusion on microsamples. Rapid Comm Mass Spectrometry, 33: 587–599

    Article  ADS  CAS  Google Scholar 

  • Wang F, Yang L K, Li B Q, Shi W B, Wang Y Z. 2021. Dating on the planetary surface in a deep space mission: Methods and techniques (in Chinese). Bull Mineral Petrol Geochem, 40: 1304–1312

    Google Scholar 

  • Wendt L, Gross C, Kneissl T, Sowe M, Combe J P, LeDeit L, McGuire P C, Neukum G. 2011. Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus, 213: 86–103

    Article  ADS  CAS  Google Scholar 

  • Wright I P. 2003. Meteorites, Mars and Beagle 2—From novel analysis in the laboratory to pioneering experiments in space. Analyst, 128: 1300–1303

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zheng M P, Kong W G, Chen W X, Kong F J, Zhang X F. 2013. A comparative analysis of evaporite deposition on Earth and Mars: Implications for the climate change on Mars. Acta Geol Sin-Eng, 87: 885–897

    Article  CAS  Google Scholar 

  • Zolotov M Y, Shock E L. 2005. Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars. Geophys Res Lett, 32: L21203

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the expert reviewers for their valuable and constructive comments, which helped to improve this paper. This study was supported by the National Natural Science Foundation of China (Grant Nos. 42241161, 41873063), the Geological Survey Project of China Geological Survey (Grant No. DD20221644), the China Postdoctoral Science Foundation (Grant No. 2021M703196), and the 2021 Graduate Innovation Fund Project of China University of Geosciences, Beijing (Grant No. YB2021YC021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zheng, D., Wu, Y. et al. Mars exploration—In situ K-Ar dating of jarosite. Sci. China Earth Sci. 67, 641–656 (2024). https://doi.org/10.1007/s11430-023-1245-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1245-8

Keywords

Navigation