Skip to main content
Log in

Importance of orographic gravity waves over the Tibetan Plateau on the spring rainfall in East Asia

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The springtime persistent rainfall (SPR) is the major rainy period before the onset of summer monsoon in East Asia, which profoundly affects the regional and even global hydrological cycle. Despite the great importance of the mechanical and thermal effects of the Tibetan Plateau (TP) large-scale orography on the formation of SPR, the impact of small-scale orography over the TP remains poorly understood. Here we show that upward-propagating orographic gravity waves (OGWs), which occur as the subtropical westerlies interact with the TP’s small-scale orography, contribute importantly to the SPR. The breaking of OGWs induces a large zonal wave drag in the middle troposphere, which drives a meridional circulation across the TP. The rising branch of the meridional circulation acts to lower the pressure and increase the meridional pressure gradient to the south of the TP by dynamically pumping the lower-tropospheric air upwards. The southwesterly monsoonal flow on the southeastern flank of the TP thus intensifies and transports more water vapor to East Asia, resulting in an enhancement of the SPR. This finding helps more completely understand the impacts of TP’s multiscale orography on the SPR and provides a new perspective on the westerly-monsoon synergy in East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen F, Ding L, Piao S, Zhou T, Xu B, Yao T, Li X. 2021. The Tibetan Plateau as the engine for Asian environmental change: The Tibetan Plateau Earth system research into a new era. Sci Bull, 66: 1263–1266

    Article  Google Scholar 

  • Chen L, Pryor S C, Wang H, Zhang R. 2019. Distribution and variation of the surface sensible heat flux over the central and eastern Tibetan Plateau: Comparison of station observations and multireanalysis products. J Geophys Res-Atmos, 124: 6191–6206

    Article  Google Scholar 

  • Choi H, Choi S, Koo M, Kim J, Kwon Y, Hong S. 2017. Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J Geophys Res-Atmos, 122: 10669–10678

    Article  Google Scholar 

  • Cohen N Y, Boos W R. 2016. Modulation of subtropical stratospheric gravity waves by equatorial rainfall. Geophys Res Lett, 43: 466–471

    Article  Google Scholar 

  • Ding Y. 2019. The major advances and development process of the theory of heavy rainfalls in China (in Chinese). Torr Rain Dis, 38: 395–406

    Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, MongeSanz B M, Morcrette J, Park B, Peubey C, de Rosnay P, Tavolato C, Thépaut J, Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597

    Article  Google Scholar 

  • Eckermann S D, Preusse P. 1999. Global measurements of stratospheric mountain waves from space. Science, 286: 1534–1537

    Article  Google Scholar 

  • Espinosa Z I, Sheshadri A, Cain G R, Gerber E P, DallaSanta K J. 2022. Machine learning gravity wave parameterization generalizes to capture the QBO and response to increased CO2. Geophys Res Lett, 49: e2022GL098174

    Article  Google Scholar 

  • Fu Y, Ma Y, Zhong L, Yang Y, Guo X, Wang C, Xu X, Yang K, Xu X, Liu L, Fan G, Li Y, Wang D. 2020. Land-surface processes and summercloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. Natl Sci Rev, 7: 500–515

    Article  Google Scholar 

  • Haynes P H, McIntyre M E, Shepherd T G, Marks C J, Shine K P. 1991. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci, 48: 651–678

    Article  Google Scholar 

  • Haynes P H, Shepherd T G. 1989. The importance of surface pressure changes in the response of the atmosphere to zonally-symmetric thermal and mechanical forcing. Q J R Meteorol Soc, 115: 1181–1208

    Google Scholar 

  • Joyce R J, Janowiak J E, Arkin P A, Xie P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol, 5: 487–503

    Article  Google Scholar 

  • Kim Y J, Doyle J D. 2005. Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Q J R Meteorol Soc, 131: 1893–1921

    Article  Google Scholar 

  • Kruse C G. 2020. Regional to global evolution of impacts of parameterized mountain-wave drag in the lower stratosphere. J Clim, 33: 3093–3106

    Article  Google Scholar 

  • Li J, Wang W C, Mao J, Wang Z, Zeng G, Chen G. 2019. Persistent spring shortwave cloud radiative effect and the associated circulations over southeastern China. J Clim, 32: 3069–3087

    Article  Google Scholar 

  • Li J, Yu R, Yuan W, Chen H, Sun W, Zhang Y. 2015. Precipitation overE astA sia simulated by NCAR CAM5 at different horizontal resolutions. J Adv Model Earth Syst, 7: 774–790

    Article  Google Scholar 

  • Li P, Zhou T, Chen X. 2018. Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets. Clim Dyn, 51: 4243–4257

    Article  Google Scholar 

  • Li R, Xu X, Wang Y, Teixeira M A C, Tang J, Lu Y. 2020. The response of parameterized orographic gravity waves to rapid warming over the Tibetan Plateau. Atmosphere, 11: 1016

    Article  Google Scholar 

  • Luo Y, Zhang R, Wan Q, Wang B, Wong W K, Hu Z, Jou B J D, Lin Y, Johnson R H, Chang C P, Zhu Y, Zhang X, Wang H, Xia R, Ma J, Zhang D L, Gao M, Zhang Y, Liu X, Chen Y, Huang H, Bao X, Ruan Z, Cui Z, Meng Z, Sun J, Wu M, Wang H, Peng X, Qian W, Zhao K, Xiao Y. 2017. The Southern China monsoon rainfall experiment (SCMREX). Bull Am Meteorol Soc, 98: 999–1013

    Article  Google Scholar 

  • Matsuoka D, Watanabe S, Sato K, Kawazoe S, Yu W, Easterbrook S. 2020. Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets. Geophys Res Lett, 47: e2020GL089436

    Article  Google Scholar 

  • Pithan F, Shepherd T G, Zappa G, Sandu I. 2016. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys Res Lett, 43: 7231–7240

    Article  Google Scholar 

  • Šácha P, Kuchar A, Eichinger R, Pisoft P, Jacobi C, Rieder H E. 2021. Diverse dynamical response to orographic gravity wave drag hotspots—A zonal mean perspective. Geophys Res Lett, 48: e2021GL093305

    Article  Google Scholar 

  • Sandu I, van Niekerk A, Shepherd T G, Vosper S B, Zadra A, Bacmeister J, Beljaars A, Brown A R, Dörnbrack A, McFarlane N, Pithan F, Svensson G. 2019. Impacts of orography on large-scale atmospheric circulation. NPJ Clim Atmos Sci, 2: 10

    Article  Google Scholar 

  • Sato K, Hirano S. 2019. The climatology of the Brewer-Dobson circulation and the contribution of gravity waves. Atmos Chem Phys, 19: 4517–4539

    Article  Google Scholar 

  • Sato K, Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M. 2009. On the origins of mesospheric gravity waves. Geophys Res Lett, 36: L19801

    Article  Google Scholar 

  • Shaw T A, Boos W R. 2012. The tropospheric response to tropical and subtropical zonally asymmetric torques: Analytical and idealized numerical model results. J Atmos Sci, 69: 214–235

    Article  Google Scholar 

  • Shepherd T G. 2014. Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci, 7: 703–708

    Article  Google Scholar 

  • Sigmond M, Shepherd T G. 2014. Compensation between resolved wave driving and parameterized orographic gravity wave driving of the Brewer-Dobson Circulation and its response to climate change. J Clim, 27: 5601–5610

    Article  Google Scholar 

  • Teixeira M A C, Argain J L. 2022. The drag exerted by weakly dissipative trapped lee waves on the atmosphere: Application to Scorer’s two-layer model. Q J R Meteorol Soc, 148: 3183–3202

    Article  Google Scholar 

  • Tian S F, Yasunari T. 1998. Climatological aspects and mechanism of spring persistent rains over Central China. J Meteorol Soc Jpn, 76: 57–71

    Article  Google Scholar 

  • van Niekerk A, Sandu I, Vosper S B. 2018. The circulation response to resolved versus parametrized orographic drag over complex mountain terrains. J Adv Model Earth Syst, 10: 2527–2547

    Article  Google Scholar 

  • Wan R J, Wu G X. 2007. Mechanism of the spring persistent rains over southeastern China. Sci China Ser D, 50: 130–144

    Article  Google Scholar 

  • Wang F, Yang S, Wu T. 2014. Radiation budget biases in AMIP5 models over the East Asian monsoon region. J Geophys Res-Atmos, 119: 13400–13426

    Article  Google Scholar 

  • Wu G, Duan A, Liu Y, Mao J, Ren R, Bao Q, He B, Liu B, Hu W. 2015. Tibetan Plateau climate dynamics: recent research progress and outlook. Natl Sci Rev, 2: 100–116

    Article  Google Scholar 

  • Wu G, Liu Y, He B, Bao Q, Duan A, Jin F F. 2012. Thermal controls on the Asian summer monsoon. Sci Rep, 2: 404

    Article  Google Scholar 

  • Wu G, Liu Y, Zhang Q, Duan A, Wang T, Wan R, Liu X, Li W, Wang Z, Liang X. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol, 8: 770–789

    Article  Google Scholar 

  • Xu X, Li R, Teixeira M A C, Lu Y. 2021. On the momentum flux of vertically propagating orographic gravity waves excited in nonhydrostatic flow over three-dimensional orography. J Atmos Sci, 78: 1807–1822

    Google Scholar 

  • Xu X, Song J, Wang Y, Xue M. 2017. Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian beam approximation. J Atmos Sci, 74: 1783–1798

    Article  Google Scholar 

  • Xu X, Zhao T, Lu C, Guo Y, Chen B, Liu R, Li Y, Shi X. 2014. An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos Chem Phys, 14: 11287–11295

    Article  Google Scholar 

  • Yeh T C. 1950. The circulation of the high troposphere over China in the winter of 1945–46. Tellus, 2: 173–183

    Article  Google Scholar 

  • Zhang L, Zhou T, Chen X, Wu P, Christidis N, Lott F C. 2020. The late spring drought of 2018 in South China. Bull Am Meteorol Soc, 101: S59–S64

    Article  Google Scholar 

  • Zhang R, Xu X, Wang Y. 2020. Impacts of subgrid orographic drag on the summer monsoon circulation and precipitation in East Asia. J Geophys Res-Atmos, 125: e2019JD032337

    Article  Google Scholar 

  • Zhang Y, Chen H, Yu R. 2014. Simulations of stratus clouds over Eastern China in CAM5: Sensitivity to horizontal resolution. J Clim, 27: 7033–7052

    Article  Google Scholar 

  • Zhao P, Zhang R, Liu J, Zhou X, He J. 2007. Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall. Clim Dyn, 28: 797–811

    Article  Google Scholar 

  • Zhou X, Beljaars A, Wang Y, Huang B, Lin C, Chen Y, Wu H. 2017. Evaluation of WRF simulations with different selections of subgrid orographic drag over the Tibetan Plateau. J Geophys Res-Atmos, 122: 9759–9772

    Article  Google Scholar 

  • Zhou X, Yang K, Beljaars A, Li H, Lin C, Huang B, Wang Y. 2019. Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau. Clim Dyn, 53: 707–720

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grants No. 2019QZKK0105), and the National Natural Science Foundation of China (Grants Nos. 42122036, 91837207, 42230607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Xu or Xiangde Xu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Xu, X., Xu, X. et al. Importance of orographic gravity waves over the Tibetan Plateau on the spring rainfall in East Asia. Sci. China Earth Sci. 66, 2594–2602 (2023). https://doi.org/10.1007/s11430-023-1204-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1204-6

Keywords

Navigation