Skip to main content
Log in

Human activity over natural inputs determines the bacterial community in an ice core from the Muztag ata glacier

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Ice core provides a valuable vertical timeline of past climates and anthropogenic activities. Environmental proxies have been widely used in these studies, but there are few biological indicators available. To address this gap, we investigated the bacterial community from a 74 m ice core of Muztag ata glacier on the Tibetan Plateau to link biological indicators with past climate and anthropogenic activities. By analyzing the portion of the ice core with environmental proxies available (corresponding to 1907 to 1991), we observed an increase in bacterial richness throughout the ice core, which was associated with higher NH +4 , an indicator of agricultural development. The bacterial community was jointly determined by human activity, natural input, and air temperature, with a strong human influence after the 1950s. Furthermore, the relative abundance of animal gut-associated bacteria, including Aerococcaceae, Nocardiaceae, Muribaculaceae, and Lachnospiraceae, was associated with livestock number changes in the Central Asian region. Together with other bacterial lineages, they jointly explained 59.8% of the livestock number changes. This study provides quantitative evidence of the associations between bacterial indicators and past climate and human activities, highlighting the potential of using bacterial proxies for ice core studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Salameen F, Habibi N, Uddin S, Al Mataqi K, Kumar V, Al Doaij B, Al Amad S, Al Ali E, Shirshikhar F. 2020. Spatio-temporal variations in bacterial and fungal community associated with dust aerosol in Kuwait. PLoS ONE, 15: e0241283

    Article  CAS  Google Scholar 

  • Anesio A M, Lutz S, Chrismas N A M, Benning L G. 2017. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes, 3: 10

    Article  Google Scholar 

  • Aricha H, Simujide H, Wang C, Zhang J, Lv W, Jimisi X, Liu B, Chen H, Zhang C, He L, Cui Y, Gao R, Aorigele C. 2021. Comparative analysis of fecal microbiota of grazing Mongolian cattle from different regions in Inner Mongolia, China. Animals, 11: 1938

    Article  Google Scholar 

  • Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J, 6: 1621–1624

    Article  CAS  Google Scholar 

  • Chen X, Kumari D, Achal V. 2020. A Review on airborne microbes: The characteristics of sources, pathogenicity and geography. Atmosphere, 11: 919

    Article  CAS  Google Scholar 

  • Chen Y, Liu K, Liu Y et al. 2022. Temporal variation of bacterial community and nutrients in Tibetan glacier snowpack. The Cryosphere, 16: 1265–1280

    Article  Google Scholar 

  • Clarke KR, Warwick RM. 2006. PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • da C Jesus E, Marsh T L, Tiedje J M, de S Moreira F M. 2009. Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J, 3: 1004–1011

    Article  CAS  Google Scholar 

  • Dillon K P, Correa F, Judon C, Sancelme M, Fennell D E, Delort A M, Amato P. 2020. Cyanobacteria and algae in clouds and rain in the area of puy de Dôme, central France. Appl Environ Microbiol, 87: e01850

    Article  Google Scholar 

  • Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26: 2460–2461

    Article  CAS  Google Scholar 

  • Fang Z, Guo W, Zhang J, Lou X. 2018. Influence of heat events on the composition of airborne bacterial communities in urban ecosystems. Int J Environ Res Public Health, 15: 2295

    Article  CAS  Google Scholar 

  • Fernandez M O, Thomas R J, Garton N J, Hudson A, Haddrell A, Reid J P. 2019. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J R Soc Interface, 16: 20180779

    Article  CAS  Google Scholar 

  • Hell K, Edwards A, Zarsky J, Podmirseg S M, Girdwood S, Pachebat J A, Insam H, Sattler B. 2013. The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME J, 7: 1814–1826

    Article  CAS  Google Scholar 

  • Iakovides M, Tsiamis G, Tziaras T, Stathopoulou P, Nikolaki S, Iakovides G, Stephanou E G. 2022. Two-year systematic investigation reveals alterations induced on chemical and bacteriome profile of PM2.5 by African dust incursions to the Mediterranean atmosphere. Sci Total Environ, 815: 151976

    Article  CAS  Google Scholar 

  • Jassby A D, Cloern J E. 2017. wq: Exploring water quality monitoring data. R package version 0.4.9. https://cran.r-project.org/package=wq

  • Legendre P, Anderson M J. 1999. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol Monogr, 69: 1–24

    Article  Google Scholar 

  • Legrand M, Mayewski P. 1997. Glaciochemistry of polar ice cores: A review. Rev Geophys, 35: 219–243

    Article  CAS  Google Scholar 

  • Li Z, Yao T, Tian L, Xu B, Wu G, Zhu G. 2004. Borehole temperature at the Ice-core drilling site in the Muztag Ata glacier, East Pamirs. J Glaciol Geocryol, 26: 284–288

    Google Scholar 

  • Liu Y, Priscu J C, Yao T, Vick-Majors T J, Xu B, Jiao N, Santibáñez P, Huang S, Wang N, Greenwood M, Michaud A B, Kang S, Wang J, Gao Q, Yang Y. 2016. Bacterial responses to environmental change on the Tibetan Plateau over the past half century. Environ Microbiol, 18: 1930–1941

    Article  Google Scholar 

  • Ma J, Zhu Y, Wang Z, Yu X, Hu R, Wang X, Cao G, Zou H, Shah A M, Peng Q, Xue B, Wang L, Zhao S, Kong X. 2020. Comparing the bacterial community in the gastrointestinal tracts between growth-retarded and normal yaks on the Qinghai-Tibetan Plateau. Front Microbiol, 11: 600516

    Article  Google Scholar 

  • McConnell J R, Edwards R, Kok G L, Flanner M G, Zender C S, Saltzman E S, Banta J R, Pasteris D R, Carter M M, Kahl J D W. 2007. 20th-Century industrial black carbon emissions altered Arctic climate forcing. Science, 317: 1381–1384

    Article  CAS  Google Scholar 

  • Miteva V, Teacher C, Sowers T, Brenchley J. 2009. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol, 11: 640–656

    Article  CAS  Google Scholar 

  • Morris C E, Sands D C, Bardin M, Jaenicke R, Vogel B, Leyronas C, Ariya P A, Psenner R. 2011. Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8: 17–25

    Article  CAS  Google Scholar 

  • Peix A, Ramírez-Bahena M H, Velázquez E. 2018. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol, 57: 106–116

    Article  Google Scholar 

  • Price P B. 2007. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol, 59: 217–231

    Article  CAS  Google Scholar 

  • Price P B, Bay R C. 2012. Marine bacteria in deep Arctic and Antarctic ice cores: A proxy for evolution in oceans over 300 million generations. Biogeosciences, 9: 3799–3815

    Article  CAS  Google Scholar 

  • Qi J, Ji M, Wang W, Zhang Z, Liu K, Huang Z, Liu Y. 2022. Effect of Indian monsoon on the glacial airborne bacteria over the Tibetan Plateau. Sci Total Environ, 831: 154980

    Article  CAS  Google Scholar 

  • R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rasmussen M. 2016. Aerococcus: An increasingly acknowledged human pathogen. Clin Microbiol Infect, 22: 22–27

    Article  CAS  Google Scholar 

  • Romdhane S, Spor A, Banerjee S, Breuil M C, Bru D, Chabbi A, Hallin S, van der Heijden M G A, Saghai A, Philippot L. 2022. Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environ Microbiome, 17: 1

    Article  Google Scholar 

  • Sanchez G, Trinchera L, Sanchez MG, et al. 2013. Package ‘plspm’. Citeseer: State College, PA, USA

    Google Scholar 

  • Santibáñez P A, Maselli O J, Greenwood M C, Grieman M M, Saltzman E S, McConnell J R, Priscu J C. 2018. Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene. Glob Change Biol, 24: 2182–2197

    Article  Google Scholar 

  • Schwikowski M, Brütsch S, Gäggeler H W, Schotterer U. 1999. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. J Geophys Res, 104: 13709–13719

    Article  CAS  Google Scholar 

  • Thiel N, Münch S, Behrens W, Junker V, Faust M, Biniasch O, Kabelitz T, Siller P, Boedeker C, Schumann P, Roesler U, Amon T, Schepanski K, Funk R, Nübel U. 2020. Airborne bacterial emission fluxes from manure-fertilized agricultural soil. Microb Biotechnol, 13: 1631–1647

    Article  CAS  Google Scholar 

  • Tian L, Yao T, Li Z, Macclune K, Wu G, Xu B, Li Y, Lu A, Shen Y. 2006. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. J Geophys Res, 111: D13103

    Google Scholar 

  • Wang K, Zhang H, Hu L, Zhang G, Lu H, Luo H, Zhao S, Zhu H, Wang Y. 2022. Characterization of the microbial communities along the gastrointestinal tract in crossbred cattle. Animals, 12: 825

    Article  Google Scholar 

  • Wang M, Xu B, Kaspari S D, Gleixner G, Schwab V F, Zhao H, Wang H, Yao P. 2015. Century-long record of black carbon in an ice core from the Eastern Pamirs: Estimated contributions from biomass burning. Atmos Environ, 115: 79–88

    Article  CAS  Google Scholar 

  • Wood S.N. 2017. Generalized Additive Models an introduction with R. Chapman & Hall/CRC Texts in Statistical Science. Chapman and Hall/CRC

  • Xiang S R, Shang T C, Chen Y, Yao T D. 2009. Deposition and post-deposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol Ecol, 70: 165–176

    Article  CAS  Google Scholar 

  • Yang Y, Yi Y, Wang W, Zhou Y, Yang Z. 2020. Generalized additive models for biomass simulation of submerged macrophytes in a shallow lake, Sci Total Environ, 711:13510. Sci Total Environ, 711: 135108

    Article  CAS  Google Scholar 

  • Yao T, Xiang S, Zhang X, Wang N, Wang Y. 2006. Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Glob Biogeochem Cycle, 20: GB1004

    Article  Google Scholar 

  • Yao T, Liu Y, Kang S, Jiao N, Zeng Y, Liu X, Zhang Y. 2008. Bacteria variabilities in a Tibetan ice core and their relations with climate change. Glob Biogeochem Cycle, 22: GB4017

    Article  Google Scholar 

  • Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S. 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys, 51: 525–548

    Article  Google Scholar 

  • Yao T, Li Z, Thompson L G, Mosley-Thompson E, Wang Y, Tian L, Wang N, Duan K. 2017. δ18O records from Tibetan ice cores reveal differences in climatic changes. Ann Glaciol, 43: 1–7

    Article  Google Scholar 

  • Yoon S H, Ha S M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Systatic Evolary Microbiol, 67: 1613–1617

    Article  CAS  Google Scholar 

  • Zhang X, Yao T, An L, Tian L, Xu S. 2017. A study on the vertical profile of bacterial DNA structure in the Puruogangri (Tibetan Plateau) ice core using denaturing gradient gel electrophoresis. Ann Glaciol, 43: 160–166

    Article  Google Scholar 

  • Zhang X F, Yao T D, Tian L D, Xu S J, An L Z. 2008. Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb Ecol, 55: 476–488

    Article  CAS  Google Scholar 

  • Zhao H, Xu B, Yao T, Tian L, Li Z. 2011. Records of sulfate and nitrate in an ice core from Mount Muztagata, central Asia. J Geophys Res, 116: D13304

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Plans (Grant No. 2021YFC2300904), the National Natural Science Foundation of China (Grant Nos. U21A20176 and 42330410), and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqin Liu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiao, N., Ji, M. et al. Human activity over natural inputs determines the bacterial community in an ice core from the Muztag ata glacier. Sci. China Earth Sci. (2024). https://doi.org/10.1007/s11430-022-1282-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11430-022-1282-x

Keywords

Navigation