Skip to main content
Log in

Source characteristics of the mainshock and aftershocks of the 2019 Changning earthquake sequence: Implications for fluid effects

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The 2019 MS6.0 Changning earthquake occurred in the tectonically stable Sichuan Basin, where the epicenter and its adjacent areas are important shale gas and salt mine production fields, resulting in hot debates on whether the seismogenic mechanism of the 2019 Changning earthquake is related to human activities. As source characteristics and fluid pressure can provide important constraints on whether an earthquake is induced, we investigate the seismogenic mechanisms of the mainshock and 9 MW⩾4.0 aftershocks. In overall, the mainshock and the majority of the aftershocks are characterized by relatively shallow focal depths (1–4 km) and significant non-double-couple (non-DC) components. However, the mainshock and the aftershocks differ in two aspects: (1) the compensated-linear-vector-dipole components dominate the non-DC components of the mainshock, whereas the isotropic components dominate the most aftershocks; (2) the fluid overpressure of the mainshock is over 30 MPa, whereas the fluid overpressure of the most aftershocks is less than 10 MPa. Thus, we propose that the mainshock is triggered by weakened fault strength with long-term fluid injection, and that its large non-DC components are associated with complex rupture processes. Comparatively, the aftershocks may be triggered by postseismic stress transfer by combining the Coulomb failure stress changes in the poroelastic medium. Our results highlight the possible role of fluid in the occurrence of the Changning earthquake sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson G M, Eaton D W, Igonin N. 2020. Developments in understanding seismicity triggered by hydraulic fracturing. Nat Rev Earth Environ, 1: 264–277

    Article  Google Scholar 

  • Bao X, Eaton D W. 2016. Fault activation by hydraulic fracturing in western Canada. Science, 354: 1406–1409

    Article  Google Scholar 

  • Cesca S, Rohr A, Dahm T. 2013. Discrimination of induced seismicity by full moment tensor inversion and decomposition. J Seismol, 17: 147–163

    Article  Google Scholar 

  • Chang Z, Zhang Y, Wang G, Zhang S, Mao Z, and Liu C. 2020. The Geological Genesis of the 2019 Changning MS6.0 earthquake in Sichuan: Connecting and rupturing of regional structural joints (in Chinese). Acta Geosci Sin, 41: 469–480

    Google Scholar 

  • Cheng Y, Wang X, Zhan Z, Ben-Zion Y. 2021. Isotropic source components of events in the 2019 Ridgecrest, California, earthquake sequence. Geophys Res Lett, 48: e94515

    Article  Google Scholar 

  • Chong J, Ni S, Zeng X. 2010. sPL, an effective seismic phase for determining focal depth at near distance (in Chinese). Chin J Geophys, 53: 2620–2630

    Google Scholar 

  • Dahm T, Becker D, Bischoff M, Cesca S, Dost B, Fritschen R, Hainzl S, Klose C D, Kühn D, Lasocki S, Meier T, Ohrnberger M, Rivalta E, Wegler U, Husen S. 2013. Recommendation for the discrimination of human-related and natural seismicity. J Seismol, 17: 197–202

    Article  Google Scholar 

  • Deng K, Liu Y, Harrington R M. 2016. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophys Res Lett, 43: 8482–8491

    Article  Google Scholar 

  • Dieterich J H, Richards-Dinger K B, Kroll K A. 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQSim. Seismol Res Lett, 86: 1102–1109

    Article  Google Scholar 

  • Dreger D S, Tkalcic H, Johnston M. 2000. Dilational processes accompanying earthquakes in the long valley caldera. Science, 288: 122–125

    Article  Google Scholar 

  • Foulger G R, Wilson M P, Gluyas J G, Julian B R, Davies R J. 2018. Global review of human-induced earthquakes. Earth-Sci Rev, 178: 438–514

    Article  Google Scholar 

  • Gao R, Chen C, Wang H, Lu Z, Brown L, Dong S, Feng S, Li Q, Li W, Wen Z, Li F. 2016. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth Planet Sci Lett, 454: 86–91

    Article  Google Scholar 

  • Grigoli F, Cesca S, Priolo E, Rinaldi A P, Clinton J F, Stabile T A, Dost B, Fernandez M G, Wiemer S, Dahm T. 2017. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev Geophys, 55: 310–340

    Article  Google Scholar 

  • Grigoli F, Cesca S, Rinaldi A P, Manconi A, López-Comino J A, Clinton J F, Westaway R, Cauzzi C, Dahm T, Wiemer S. 2018. The November 2017 MW5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 360: 1003–1006

    Article  Google Scholar 

  • Guo R, Zheng Y, Xu J. 2020. Stress modulation of the seismic gap between the 2008 MS8.0 Wenchuan earthquake and the 2013 MS7.0 Lushan earthquake and implications for seismic hazard. Geophys J Int, 221: 2113–2125

    Article  Google Scholar 

  • Guo R, Zheng Y, Xu J, Jiang Z. 2019. Seismic and aseismic fault slip associated with the 2017 MW8.2 Chiapas, Mexico, earthquake sequence. Seismol Res Lett, 90: 1111–1120

    Article  Google Scholar 

  • Guo X, Zhang X, Li D, Yi L, Luo J. 2022. Source characteristics of the shallow 2019 MS6.0 Changning, China, earthquake sequence in the salt mining area. Seismol Res Lett, 93: 2599–2611

    Article  Google Scholar 

  • He D, Lu R, Huang H, Wang X, Jiang H, Zhang W. 2019. Tectonic and geological setting of the earthquake hazards in the Changning shale gas development zone, Sichuan Basin, SW China. Pet Explor Dev, 46: 1051–1064

    Article  Google Scholar 

  • Hennings P H, Nicot J P, Gao R S, DeShon H R, Lund Snee J E, Morris A P, Brudzinski M R, Horne E A, Breton C. 2021. Pore pressure threshold and fault slip potential for induced earthquakes in the Dallas-Fort Worth area of north central Texas. Geophys Res Lett, 48: e2021GL093564

    Article  Google Scholar 

  • Huo Y, Zhang W, Zhang J. 2021. Centroid moment tensor of the 2019 MW5.7 Changning earthquake refined using 3D green’s functions considering surface topography. Front Earth Sci, 9: 642721

    Article  Google Scholar 

  • Jia K, Zhou S, Zhuang J, Jiang C, Guo Y, Gao Z, Gao S, Ogata Y, Song X. 2020. Nonstationary background seismicity rate and evolution of stress changes in the Changning salt mining and shale-gas hydraulic fracturing region, Sichuan Basin, China. Seismol Res Lett, 91: 2170–2181

    Article  Google Scholar 

  • Julian B R, Miller A D, Foulger G R. 1998. Non-double-couple earthquakes 1. Theory. Rev Geophys, 36: 525–549

    Article  Google Scholar 

  • Keranen K M, Savage H M, Abers G A, Cochran E S. 2013. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 MW5.7 earthquake sequence. Geology, 41: 699–702

    Article  Google Scholar 

  • King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am, 84: 935–953

    Google Scholar 

  • Lei X, Ma S, Chen W, Pang C, Zeng J, Jiang B. 2013. A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan basin, China. J Geophys Res-Solid Earth, 118: 4296–4311

    Article  Google Scholar 

  • Lei X, Huang D, Su J, Jiang G, Wang X, Wang H, Guo X, Fu H. 2017. Fault reactivation and earthquakes with magnitudes of up to MW4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Sci Rep, 7: 7971

    Article  Google Scholar 

  • Lei X, Wang Z, Su J. 2019a. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in south Sichuan Basin induced by shale gas hydraulic fracturing. Seismol Res Lett, 90: 1099–1110

    Article  Google Scholar 

  • Lei X L, Wang Z W, Su J R. 2019b. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China. Earth Planet Phys, 3: 510–525

    Article  Google Scholar 

  • Li J, Zhang H, Sadi Kuleli H, Nafi Toksoz M. 2011. Focal mechanism determination using high-frequency waveform matching and its application to small magnitude induced earthquakes. Geophys J Int, 184: 1261–1274

    Article  Google Scholar 

  • Li T, Sun J, Bao Y, Zhan Y, Shen Z K, Xu X, Lasserre C. 2021. The 2019 MW5.8 Changning, China earthquake: A cascade rupture of fold-accommodation faults induced by fluid injection. Tectonophysics, 801: 228721

    Article  Google Scholar 

  • Liu J, Zahradník J. 2020. The 2019 MW5.7 Changning earthquake, Sichuan Basin, China: A shallow doublet with different faulting styles. Geophys Res Lett, 47: e85408

    Google Scholar 

  • Lu R, He D, Liu J Z, Tao W, Huang H, Xu F, Liu G. 2021. Seismogenic faults of the Changning earthquake sequence constrained by high-resolution seismic profiles in the southwestern Sichuan Basin, China. Seismol Res Lett, 92: 3757–3766

    Article  Google Scholar 

  • Luo Y, Ni S D, Zeng X F, Zheng Y, Chen Q F, Chen Y. 2010. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Sci China Earth Sci, 53: 1655–1664

    Article  Google Scholar 

  • Luo Y, Ni S D, Zeng X F, Xie J, Chen Y, Long F. 2011. The M5.0 Suining-Tongnan (China) earthquake of 31 January 2010: A destructive earthquake occurring in sedimentary cover. Chin Sci Bull, 56: 521–525

    Article  Google Scholar 

  • Martínez-Garzón P, Kwiatek G, Bohnhoff M, Dresen G. 2017. Volumetric components in the earthquake source related to fluid injection and stress state. Geophys Res Lett, 44: 800–809

    Article  Google Scholar 

  • Megies T, Wassermann J. 2014. Microseismicity observed at a non-pressure-stimulated geothermal power plant. Geothermics, 52: 36–49

    Article  Google Scholar 

  • Moschetti M P, Hartzell S H, Herrmann R B. 2019. Rupture model of the M5.8 Pawnee, Oklahoma, earthquake from regional and teleseismic waveforms. Geophys Res Lett, 46: 2494–2502

    Article  Google Scholar 

  • Panza G F, Saraò A. 2000. Monitoring volcanic and geothermal areas by full seismic moment tensor inversion: Are non-double-couple components always artefacts of modelling? Geophys J Int, 143: 353–364

    Article  Google Scholar 

  • Peña-Castro A F, Roth M P, Verdecchia A, Onwuemeka J, Liu Y, Harrington R M, Zhang Y, Kao H. 2020. Stress chatter via fluid flow and fault slip in a hydraulic fracturing-induced earthquake sequence in the Montney Formation, British Columbia. Geophys Res Lett, 47: e87254

    Article  Google Scholar 

  • Qian Y, Chen X, Luo H, Wei S, Wang T, Zhang Z, Luo X. 2019. An extremely shallow MW4.1 thrust earthquake in the eastern Sichuan Basin (China) likely triggered by unloading during infrastructure construction. Geophys Res Lett, 46: 13775–13784

    Article  Google Scholar 

  • Rösler B, Stein S. 2022. Consistency of non-double-couple components of seismic moment tensors with earthquake magnitude and mechanism. Seismol Res Lett, 93: 1510–1523

    Article  Google Scholar 

  • Ross Z E, Ben-Zion Y, Zhu L. 2015. Isotropic source terms of San Jacinto fault zone earthquakes based on waveform inversions with a generalized CAP method. Geophys J Int, 200: 1269–1280

    Article  Google Scholar 

  • Ruan X, Cheng W, Zhang J, Li J, Chen Y. 2008. Research of the earthquakes induced by water injections in salt mines in Changning, Sichuan (in Chinese). Earthq Res China, 24: 226–234

    Google Scholar 

  • Schultz R, Skoumal R J, Brudzinski M R, Eaton D, Baptie B, Ellsworth W. 2020. Hydraulic fracturing-induced seismicity. Rev Geophys, 58: e2019RG000695

    Article  Google Scholar 

  • Scuderi M M, Collettini C, Marone C. 2017. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault. Earth Planet Sci Lett, 477: 84–96

    Article  Google Scholar 

  • Shen W, Ritzwoller M H, Kang D, Kim Y H, Lin F C, Ning J, Wang W, Zheng Y, Zhou L. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys J Int, 206: 954–979

    Article  Google Scholar 

  • Skoumal R J, Brudzinski M R, Currie B S. 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bull Seismol Soc Am, 105: 189–197

    Article  Google Scholar 

  • Solomon S C, Julian B R. 1974. Seismic Constraints on ocean-ridge mantle structure: Anomalous fault-plane solutions from first motions. Geophys J Int, 38: 265–285

    Article  Google Scholar 

  • Sun X, Yang P, Zhang Z. 2017. A study of earthquakes induced by water injection in the Changning salt mine area, SW China. J Asian Earth Sci, 136: 102–109

    Article  Google Scholar 

  • Tan Y, Zhang H, Li J, Yin C, Wu F. 2018. Focal mechanism determination for induced seismicity using the neighbourhood algorithm. Geophys J Int, 214: 1715–1731

    Article  Google Scholar 

  • Tan Y, Hu J, Zhang H, Chen Y, Qian J, Wang Q, Zha H, Tang P, Nie Z. 2020. Hydraulic fracturing induced seismicity in the southern Sichuan Basin due to fluid diffusion inferred from seismic and injection data analysis. Geophys Res Lett, 47: e84885

    Article  Google Scholar 

  • Terakawa T, Miller S A, Deichmann N. 2012. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland. J Geophys Res, 117: B07305

    Article  Google Scholar 

  • Terakawa T, Zoporowski A, Galvan B, Miller S A. 2010. High-pressure fluid at hypocentral depths in the L’Aquila region inferred from earthquake focal mechanisms. Geology, 38: 995–998

    Article  Google Scholar 

  • Tréhu A M, Nábělek J L, Solomon S C. 1981. Source characterization of two Reykjanes Ridge earthquakes: Surface waves and moment tensors; P waveforms and nonorthogonal nodal planes. J Geophys Res, 86: 1701–1724

    Article  Google Scholar 

  • Vavryčuk V. 2001. Inversion for parameters of tensile earthquakes. J Geophys Res, 106: 16339–16355

    Article  Google Scholar 

  • Vavryčuk V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int, 199: 69–77

    Article  Google Scholar 

  • Vavryčuk V. 2015. Moment tensor decompositions revisited. J Seismol, 19: 231–252

    Article  Google Scholar 

  • Wang R, Gu Y J, Schultz R, Zhang M, Kim A. 2017. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta. Geophys J Int, 210: 979–988

    Article  Google Scholar 

  • Wang R, Gu Y J, Schultz R, Chen Y. 2018. Faults and non-double-couple components for induced earthquakes. Geophys Res Lett, 45: 8966–8975

    Article  Google Scholar 

  • Wang R, Kümpel H J. 2003. Poroelasticity: Efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics, 68: 705–717

    Article  Google Scholar 

  • Wang S, Jiang G, Weingarten M, Niu Y. 2020. InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence. Geophys Res Lett, 47: e87603

    Google Scholar 

  • Wang S, Li Z, Guo M, Li H. 2013. Developmental characteristics of Longmaxi format shaly fissure in Changning of south of Sichuan area (in Chinese). Sci Technol Eng, 13: 10887–10892, 10898

    Google Scholar 

  • Wang Y, Huang J, Wang S, Dong D, Zhang C, Guan Q. 2016. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin (in Chinese). Nat Gas Geosci, 27: 423–432

    Google Scholar 

  • Willacy C, van Dedem E, Minisini S, Li J, Blokland J W, Das I, Droujinine A. 2019. Full-waveform event location and moment tensor inversion for induced seismicity. Geophysics, 84: KS39–KS57

    Article  Google Scholar 

  • Xie Z J, Jin B K, Zheng Y, Ge C, Xiong X, Xiong C, Hsu H T. 2013. Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms. Sci China Earth Sci, 56: 1177–1186

    Article  Google Scholar 

  • Yang Y H, Hu J C, Chen Q, Lei X, Zhao J, Li W, Xu R, Chiu C Y. 2020. Shallow slip of blind fault associated with the 2019 MS6.0 Changning earthquake in fold-and-thrust belt in salt mines of Southeast Sichuan, China. Geophys J Int, 224: 909–922

    Article  Google Scholar 

  • Yu C, Vavryčuk V, Adamová P, Bohnhoff M. 2018. Moment tensors of induced microearthquakes in the Geysers Geothermal Reservoir from broadband seismic recordings: Implications for faulting regime, stress tensor, and fluid pressure. J Geophys Res-Solid Earth, 123: 8748–8766

    Article  Google Scholar 

  • Zhang H, Eaton D W, Li G, Liu Y, Harrington R M. 2016. Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra. J Geophys Res-Solid Earth, 121: 972–993

    Article  Google Scholar 

  • Yi G, Long F, Liang M, Zhao M, Wang S, Gong Y, Qiao H, Su J. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 M6.0 Sichuan Changning earthquake sequence (in Chinese). Chin J Geophys, 62: 3432–3447

    Google Scholar 

  • Zheng Y, Ge C, Xie Z J, Yang Y J, Xiong X, Hsu H T. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake. Sci China Earth Sci, 56: 1158–1168

    Article  Google Scholar 

  • Zheng X, Ouyang B, Zhang D N, Yao Z, Liang J, Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake (in Chinese). Chin J Geophys, 52: 1412–1417

    Article  Google Scholar 

  • Zhu H, He C. 2014. Focal mechanism changing character of earthquake sequence induced by water injection: A case study of Changning sequence, Sichuan province (in Chinese). Earth Science—J China Univ Geosci, 39: 1776–1782

    Google Scholar 

  • Zhu L, Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophys J Int, 194: 839–843

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the responsible editor and two anonymous reviewers for their constructive comments and suggestions, which improve the quality of the paper significantly. We also show our respect to Prof. Guixi YI at Sichuan Seismic Bureau for sharing relocation results. Regional waveform data in this study are provided by the Data Management Centre of China National Seismic Network at the Institute of Geophysics (doihttps://doi.org/10.11998/SeisDmc/SN, login required), China National Seismic Network, China Earthquake Administration. Teleseismic waveforms are downloaded from the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (http://ds.iris.edu/wilber3/find_event). This work was supported by the high-performance computing platform TS10000 of the School of Geophysics and Geomatics, China University of Geosciences (Wuhan). This work was supported by the National Natural Science Foundation of China (Grant Nos. 42274082, 42030108, 41874053), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. 162301132637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, K., Zheng, Y., Guo, R. et al. Source characteristics of the mainshock and aftershocks of the 2019 Changning earthquake sequence: Implications for fluid effects. Sci. China Earth Sci. 66, 1321–1333 (2023). https://doi.org/10.1007/s11430-022-1040-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1040-4

Keywords

Navigation