Skip to main content
Log in

Effects of thermal, compositional and rheological properties on the long-term evolution of large thermochemical piles of primordial material in the deep mantle

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Seismic tomography observations have shown that there are two large low shear velocity provinces (LLSVPs) above the core-mantle boundary beneath Africa and the Pacific. The thermal and compositional properties of these two LLSVPs may differ from those of the ambient mantle, and they are suggested to be thermochemical piles of primordial material in the lower mantle. Their evolution is of great importance to our understanding of mantle dynamics. In this study, we systematically conducted numerical experiments to investigate the effects of the buoyancy ratio (B), compositional viscosity ratio \(\left( {\Delta {\eta _c}} \right)\), and heat-producing ratio (Λ) of the primordial material on the long-term evolution of thermochemical piles. Our results show that the buoyancy ratio plays the most important role in the stability of these piles. When the buoyancy ratio is small, and the primordial material is enriched in heat-producing elements (Λ>1), the stability of these piles decreases with increasing compositional viscosity ratio or heat-producing ratio. For cases with homogeneous heat production (Λ=1), the stability of these piles increases with increasing \(\Delta {\eta _c}\). We further compare constant internal heating with radioactive decay internal heating, and find that the long-term stability of thermochemical piles slightly decreases with radioactive decay heating, but the overall differences between these two internal heating modes are relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott D, Burgess L, Longhi J, Smith W H F. 1994. An empirical thermal history of the Earth’s upper mantle. J Geophys Res, 99: 13835–13850

    Article  Google Scholar 

  • Arevalo R, McDonough W F, Stracke A, Willbold M, Ireland T J, Walker R J. 2013. Simplified mantle architecture and distribution of radiogenic power. Geochem Geophys Geosyst, 14: 2265–2285

    Article  Google Scholar 

  • Ballmer M D, Houser C, Hernlund J W, Wentzcovitch R M, Hirose K. 2017. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat Geosci, 10: 236–240

    Article  Google Scholar 

  • Brandenburg J P, Hauri E H, van Keken P E, Ballentine C J. 2008. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet Sci Lett, 276: 1–13

    Article  Google Scholar 

  • Citron R I, Lourenço D L, Wilson A J, Grima A G, Wipperfurth S A, Rudolph M L, Cottaar S, Montési L G J. 2020. Effects of heat-producing elements on the stability of deep mantle thermochemical piles. Geochem Geophys Geosyst, 21: e2019GC008895

    Article  Google Scholar 

  • Corgne A, Liebske C, Wood B J, Rubie D C, Frost D J. 2005. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim Cosmochim Acta, 69: 485–496

    Article  Google Scholar 

  • Davaille A, Girard F, Le Bars M. 2002. How to anchor hotspots in a convecting mantle? Earth Planet Sci Lett, 203: 621–634

    Article  Google Scholar 

  • Davaille A. 1999. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402: 756–760

    Article  Google Scholar 

  • Davies D R, Goes S, Davies J H, Schuberth B S A, Bunge H P, Ritsema J. 2012. Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity. Earth Planet Sci Lett, 353–354: 253–269

    Article  Google Scholar 

  • Davies D R, Goes S, Lau H C P. 2015. Thermally dominated deep mantle LLSVPs: A review. In: Khan A, Deschamps F, eds. The Earth’s Heterogeneous Mantle. Springer Geophysics. Cham: Springer. 441–477

    Chapter  Google Scholar 

  • Deschamps F, Tackley P J. 2008. Searching for models of thermo-chemical convection that explain probabilistic tomography: I. Principles and influence of rheological parameters. Phys Earth Planet Inter, 171: 357–373

    Article  Google Scholar 

  • Deschamps F, Tackley P J. 2009. Searching for models of thermo-chemical convection that explain probabilistic tomography. II—Influence of physical and compositional parameters. Phys Earth Planet Inter, 176: 1–18

    Article  Google Scholar 

  • French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525: 95–99

    Article  Google Scholar 

  • Frost D A, Garnero E J, Rost S. 2018. Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence. Earth Planet Sci Lett, 482: 135–146

    Article  Google Scholar 

  • Garnero E J, McNamara A K, Shim S H. 2016. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat Geosci, 9: 481–489

    Article  Google Scholar 

  • Gomi H, Ohta K, Hirose K, Labrosse S, Caracas R, Verstraete M J, Hernlund J W. 2013. The high conductivity of iron and thermal evolution of the Earth’s core. Phys Earth Planet Inter, 224: 88–103

    Article  Google Scholar 

  • Graham D W. 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. Rev Mineral Geochem, 47: 247–317

    Article  Google Scholar 

  • Grove T L, Parman S W. 2004. Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett, 219: 173–187

    Article  Google Scholar 

  • He Y, Wen L. 2009. Structural features and shear-velocity structure of the “Pacific Anomaly”. J Geophys Res, 114: B02309

    Google Scholar 

  • Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett, 292: 79–88

    Article  Google Scholar 

  • Heyn B H, Conrad C P, Trønnes R G. 2018. Stabilizing effect of compositional viscosity contrasts on thermochemical piles. Geophys Res Lett, 45: 7523–7532

    Article  Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Article  Google Scholar 

  • Ishii M, Tromp J. 1999. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science, 285: 1231–1236

    Article  Google Scholar 

  • Kellogg L H, Hager B H, van der Hilst R D. 1999. Compositional stratification in the deep mantle. Science, 283: 1881–1884

    Article  Google Scholar 

  • Koelemeijer P, Deuss A, Ritsema J. 2017. Density structure of Earth’s lowermost mantle from stoneley mode splitting observations. Nat Commun, 8: 15241

    Article  Google Scholar 

  • Labrosse S, Hernlund J W, Coltice N. 2007. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450: 866–869

    Article  Google Scholar 

  • Lau H C P, Mitrovica J X, Davis J L, Tromp J, Yang H Y, Al-Attar D. 2017. Tidal tomography constrains Earth’s deep-mantle buoyancy. Nature, 551: 321–326

    Article  Google Scholar 

  • Lee C T A, Luffi P, Höink T, Li J, Dasgupta R, Hernlund J. 2010. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature, 463: 930–933

    Article  Google Scholar 

  • Li Y, Deschamps F, Tackley P J. 2014. The stability and structure of primordial reservoirs in the lower mantle: Insights from models of thermochemical convection in three-dimensional spherical geometry. Geophys J Int, 199: 914–930

    Article  Google Scholar 

  • Li Y, Deschamps F, Yang J, Chen L, Zhao L, Tackley P J. 2019. Effects of the compositional viscosity ratio on the long-term evolution of thermochemical reservoirs in the deep mantle. Geophys Res Lett, 46: 9591–9601

    Article  Google Scholar 

  • Masters G, Laske G, Bolton H, Dziewonski A. 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, 117: 63–87

    Google Scholar 

  • McDonough W F, Sun S. 1995. The composition of the Earth. Chem Geol, 120: 223–253

    Article  Google Scholar 

  • McNamara A K, Zhong S. 2004. Thermochemical structures within a spherical mantle: Superplumes or piles? J Geophys Res, 109: B07402

    Google Scholar 

  • Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J. 2012. Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J Geophys Res, 117: B06304

    Google Scholar 

  • Nakagawa T, Tackley P J. 2005. Deep mantle heat flow and thermal evolution of the Earth’s core in thermochemical multiphase models of mantle convection. Geochem Geophys Geosyst, 6: Q08003

    Article  Google Scholar 

  • Ni S, Tan E, Gurnis M, Helmberger D. 2002. Sharp sides to the African superplume. Science, 296: 1850–1852

    Article  Google Scholar 

  • Ricard Y, Richards M, Lithgow-Bertelloni C, Le Stunff Y. 1993. A geodynamic model of mantle density heterogeneity. J Geophys Res, 98: 21895–21909

    Article  Google Scholar 

  • Ritsema J, Deuss A, van Heijst H J, Woodhouse J H. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int, 184: 1223–1236

    Article  Google Scholar 

  • Ritsema J, Ni S, Helmberger D V, Crotwell H P. 1998. Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa. Geophys Res Lett, 25: 4245–4248

    Article  Google Scholar 

  • Schuberth B S A, Bunge H P, Steinle-Neumann G, Moder C, Oeser J. 2009. Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle. Geochem Geophys Geosyst, 10: Q01W01

    Article  Google Scholar 

  • Solomatov V S, Stevenson D J. 1993. Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J Geophys Res, 98: 5375–5390

    Article  Google Scholar 

  • Tackley P J, King S D. 2003. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem Geophys Geosyst, 4: 8302

    Article  Google Scholar 

  • Tackley P J. 2008. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys Earth Planet Inter, 171: 7–18

    Article  Google Scholar 

  • Tkalčić H, Young M, Muir J B, Davies D R, Mattesini M. 2015. Strong, multi-scale heterogeneity in Earth’s lowermost mantle. Sci Rep, 5: 18416

    Article  Google Scholar 

  • Trampert J, Deschamps F, Resovsky J, Yuen D. 2004. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306: 853–856

    Article  Google Scholar 

  • van Schmus W R. 1995. Natural radioactivity of the crust and mantle. In: Ahrens T J, ed. Global Earth Physics. A Handbook of Constants. Washington, DC: American Geophysical Union. 283–291

    Google Scholar 

  • van Thienen P, van den Berg A P, Vlaar N J. 2004. On the formation of continental silicic melts in thermochemical mantle convection models: Implications for early Earth. Tectonophysics, 394: 111–124

    Article  Google Scholar 

  • van Thienen P, van Summeren J, van der Hilst R D, van den Berg A P, Vlaar N J. 2005. Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth’s mantle. In: Van der Hilst R D, Bass J D, Matas J, Trampert J, eds. Earth’s Deep Mantle: Structure, Evolution and Composition. Geophysical Monograph Series. Washington, DC: American Geophysical Union. 160: 117–136

    Chapter  Google Scholar 

  • Yamazaki D, Karato S. 2001. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am Mineral, 86: 385–391

    Article  Google Scholar 

Download references

Acknowledgements

We thank Paul TACKLEY for providing the code StagYY. The calculations were performed on TianHe-1(A) cluster at National Supercomputer Center in Tianjin. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41888101, 41625016), the International Partnership Program of Chinese Academy of Sciences (Grant No. 132A11KYSB20200019), the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. 311021003), the Key Research Program of the Institute of Geology and Geophysics CAS (Grant No. IGGCAS-201904), and the Pioneer Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Li, Y. & Zhao, L. Effects of thermal, compositional and rheological properties on the long-term evolution of large thermochemical piles of primordial material in the deep mantle. Sci. China Earth Sci. 65, 2405–2416 (2022). https://doi.org/10.1007/s11430-021-9950-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9950-7

Keywords

Navigation