Skip to main content
Log in

In situ calcite U−Pb geochronology by high-sensitivity single-collector LA-SF-ICP-MS

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

U−Pb geochronology of calcite using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an emerging method, with potential applications to a vast array of geological problems. Due to the low levels of U and Pb in calcite, measurement using higher-sensitivity instruments, such as sector field (SF) ICP-MS, have advantages over more commonly used quadrupole (Q) ICP-MS instruments. Using a Thermo Element XR ICP-MS, we demonstrate that the Jet+X cone combination with the N2 enhancement technique provides the best sensitivity for measuring U and Pb isotopes. This higher sensitivity improves the precision of calcite U−Pb isotope measurements, and permits dating at high spatial resolutions (<110 µm) and for samples containing low contents of 238U (<1 µg g−1) and/or 207Pb (i.e., young samples <10 Ma). Using a spot size of 85 µm with a low fluence (∼2.0 J cm−2), the laser-induced elemental fractionation of 206Pb/238U in the NIST SRM 614, ARM-3 and WC-1 reference materials are insignificant (<2.2%). Adopting the optimized instrument parameters, we analysed four commonly-used calcite U−Pb reference materials (WC-1, Duff Brown Tank, JT, and ASH-15). The results match well with published isotope dilution data, demonstrating the reliability of our technique. ARM-3, an andesitic glass, is shown to be an appropriate reference material for both 207Pb/206Pb calibration and instrument optimization because of its moderate contents of U (∼3.75 µg g−1) and Pb (∼12.7 µg g−1). We further demonstrate that the image-guided approach using LA-ICP-MS elemental mapping is an efficient tool in obtaining robust ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouman C, Deerberg M, Schwieters J. 2009. NEPTUNE and NEPTUNE Plus: Breakthrough in Sensitivity using a Large Interface Pump and New Sample Cone. Thermo Fischer Scientific Application Note: 30187, https://www.analyteguru.com/t5/Scientific-Library/NEPTUNE-and-NEPTUNE-Plus-Breakthrough-in-Sensitivity-using-a/ta-p/4994

  • Burisch M, Gerdes A, Walter B F, Neumann U, Fettel M, Markl G. 2017. Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geol Rev, 81: 42–61

    Article  Google Scholar 

  • Cheng T, Zhao J, Feng Y, Pan W, Liu D. 2020. In-situ LA-MC-ICPMS U−Pb dating method for low-uranium carbonate minerals. Chin Sci Bull, 65: 150–154

    Article  Google Scholar 

  • Coogan L A, Parrish R R, Roberts N M W. 2016. Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U−Pb dating. Geology, 44: 147–150

    Article  Google Scholar 

  • Drost K, Chew D, Petrus J A, Scholze F, Woodhead J D, Schneider J W, Harper D A T. 2018. An image mapping approach to U−Pb LA-ICP-MS carbonate dating and applications to direct dating of carbonate sedimentation. Geochem Geophys Geosyst, 19: 4631–4648

    Article  Google Scholar 

  • Elisha B, Nuriel P, Kylander-Clark A, Weinberger R. 2021. Towards in situ U−Pb dating of dolomite. Geochronology, 3: 337–349

    Article  Google Scholar 

  • Engel J, Maas R, Woodhead J, Tympel J, Greig A. 2020. A single-column extraction chemistry for isotope dilution U−Pb dating of carbonate. Chem Geol, 531: 119311

    Article  Google Scholar 

  • Goodfellow B W, Viola G, Bingen B, Nuriel P, Kylander-Clark A R C. 2017. Palaeocene faulting in SE Sweden from U−Pb dating of slick-enfibre calcite. Terra Nova, 29: 321–328

    Article  Google Scholar 

  • Guillong M, Wotzlaw J F, Looser N, Laurent O. 2020. Evaluating the reliability of U−Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: Matrix issues and a potential calcite validation reference material. Geochronology, 2: 155–167

    Article  Google Scholar 

  • Hansman R J, Albert R, Gerdes A, Ring U. 2018. Absolute ages of multiple generations of brittle structures by U−Pb dating of calcite. Geology, 46: 207–210

    Article  Google Scholar 

  • He T, Ni Q, Miao Q, Li M. 2018. Effects of cone combinations on the signal enhancement by nitrogen in LA-ICP-MS. J Anal At Spectrom, 33: 1021–1030

    Article  Google Scholar 

  • Hill C A, Polyak V J, Asmerom Y, P. Provencio P. 2016. Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U−Pb dating of lacustrine limestone. Tectonics, 35: 896–906

    Article  Google Scholar 

  • Hoareau G, Claverie F, Pecheyran C, Paroissin C, Grignard P A, Motte G, Chailan O, Girard J P. 2021. Direct U−Pb dating of carbonates from micron-scale femtosecond laser ablation inductively coupled plasma mass spectrometry images using robust regression. Geochronology, 3: 67–87

    Article  Google Scholar 

  • Holdsworth R E, McCaffrey K J W, Dempsey E, Roberts N M W, Hardman K, Morton A, Feely M, Hunt J, Conway A, Robertson A. 2019. Natural fracture propping and earthquake-induced oil migration in fractured basement reservoirs. Geology, 47: 700–704

    Article  Google Scholar 

  • Hu Z, Liu Y, Gao S, Liu W, Zhang W, Tong X, Lin L, Zong K, Li M, Chen H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectrom, 27: 1391–1399

    Article  Google Scholar 

  • Hu Z, Gao S, Liu Y, Hu S, Chen H, Yuan H. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom, 23: 1093–1101

    Article  Google Scholar 

  • Jahn B, Cuvellier H. 1994. Pb−Pb and U−Pb geochronology of carbonate rocks: An assessment. Chem Geol, 115: 125–151

    Article  Google Scholar 

  • Jeffries T E, Fernandez-Suarez J, Corfu F, Gutierrez Alonso G. 2003. Advances in U−Pb geochronology using a frequency quintupled Nd: YAG based laser ablation system (λ=213 nm) and quadrupole based ICP-MS. J Anal At Spectrom, 18: 847–855

    Article  Google Scholar 

  • Jeffries T E, Jackson S E, Longerich H P. 1998. Application of a frequency quintupled Nd:YAG source (λ=213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. J Anal At Spectrom, 13: 935–940

    Article  Google Scholar 

  • Jochum K P, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob D E, Stracke A, Birbaum K, Frick D A, Günther D, Enzweiler J. 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res, 35: 397–429

    Article  Google Scholar 

  • Kurumada Y, Aoki S, Aoki K, Kato D, Saneyoshi M, Tsogtbaatar K, Windley B F, Ishigaki S. 2020. Calcite U−Pb age of the Cretaceous vertebrate-bearing Bayn Shire Formation in the Eastern Gobi Desert of Mongolia: Usefulness of caliche for age determination. Terra Nova, 32: 246–252

    Article  Google Scholar 

  • Kylander-Clark A R C. 2020. Expanding the limits of laser-ablation U−Pb calcite geochronology. Geochronology, 2: 343–354

    Article  Google Scholar 

  • Li Q, Parrish R R, Horstwood M S A, McArthur J M. 2014. U−Pb dating of cements in Mesozoic ammonites. Chem Geol, 376: 76–83

    Article  Google Scholar 

  • Luo K, Zhou J X, Feng Y X, Uysal I T, Nguyen A, Zhao J X, Zhang J. 2020. In situ U−Pb dating of calcite from the South China antimony metallogenic belt. iScience, 23: 101575

    Article  Google Scholar 

  • Montano D, Gasparrini M, Gerdes A, Della Porta G, Albert R. 2021. In-situ U−Pb dating of Ries Crater lacustrine carbonates (Miocene, South-West Germany): Implications for continental carbonate chronostratigraphy. Earth Planet Sci Lett, 568: 117011

    Article  Google Scholar 

  • Moorbath S, Taylor P N, Orpen J L, Treloar P, Wilson J F. 1987. First direct radiometric dating of Archaean stromatolitic limestone. Nature, 326: 865–867

    Article  Google Scholar 

  • Nuriel P, Craddock J, Kylander-Clark A R C, Uysal I T, Karabacak V, Dirik R K, Hacker B R, Weinberger R. 2019. Reactivation history of the North Anatolian fault zone based on calcite age-strain analyses. Geology, 47: 465–469

    Article  Google Scholar 

  • Nuriel P, Weinberger R, Kylander-Clark A R C, Hacker B R, Craddock J P. 2017. The onset of the Dead Sea transform based on calcite age-strain analyses. Geology, 45: 587–590

    Article  Google Scholar 

  • Nuriel P, Wotzlaw J F, Ovtcharova M, Vaks A, Stremtan C, Šala M, Roberts N M W, Kylander-Clark A R C. 2021. The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U−Pb geochronology of calcite. Geochronology, 3: 35–47

    Article  Google Scholar 

  • Pagel M, Bonifacie M, Schneider D A, Gautheron C, Brigaud B, Calmels D, Cros A, Saint-Bezar B, Landrein P, Sutcliffe C, Davis D, Chaduteau C. 2018. Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ18O water and U−Pb age. Chem Geol, 481: 1–17

    Article  Google Scholar 

  • Pan L, Shen A, Zhao J, Hu A, Hao Y, Liang F, Feng Y, Wang X, Jiang L. 2020. LA-ICP-MS U−Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). Sediment Geol, 407: 105728

    Article  Google Scholar 

  • Parrish R R, Parrish C M, Lasalle S. 2018. Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. J Geol Soc, 175: 425–442

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom, 26: 2508–2518

    Article  Google Scholar 

  • Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A, Maas R. 2010. Improved laser ablation U−Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst, 11: Q0AA06

    Article  Google Scholar 

  • Paul B, Paton C, Norris A, Woodhead J, Hellstrom J, Hergt J, Greig A. 2012. CellSpace: A module for creating spatially registered laser ablation images within the Iolite freeware environment. J Anal At Spectrom, 27: 700–706

    Article  Google Scholar 

  • Petrus J A, Chew D M, Leybourne M I, Kamber B S. 2017. A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool ‘Monocle’. Chem Geol, 463: 76–93

    Article  Google Scholar 

  • Petrus J A, Kamber B S. 2012. VizualAge: A novel approach to laser ablation ICP-MS U−Pb geochronology data reduction. Geostand Geoanal Res, 36: 247–270

    Article  Google Scholar 

  • Rasbury E T, Present T M, Northrup P, Tappero R V, Lanzirotti A, Cole J M, Wooton K M, Hatton K. 2021. Tools for uranium characterization in carbonate samples: case studies of natural U−Pb geochronology reference materials. Geochronology, 3: 103–122

    Article  Google Scholar 

  • Ring U, Gerdes A. 2016. Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics, 35: 1367–1391

    Article  Google Scholar 

  • Roberts N M W, Drost K, Horstwood M S A, Condon D J, Chew D, Drake H, Milodowski A E, McLean N M, Smye A J, Walker R J, Haslam R, Hodson K, Imber J, Beaudoin N, Lee J K. 2020. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U−Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology, 2: 33–61

    Article  Google Scholar 

  • Roberts N M W, Rasbury E T, Parrish R R, Smith C J, Horstwood M S A, Condon D J. 2017. A calcite reference material for LA-ICP-MS U−Pb geochronology. Geochem Geophys Geosyst, 18: 2807–2814

    Article  Google Scholar 

  • Roberts N M W, Walker R J. 2016. U−Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, 44: 531–534

    Article  Google Scholar 

  • Roberts N M W, Žák J, Vacek F, Sláma J. 2021. No more blind dates with calcite: Fluid-flow vs. fault-slip along the Očkov thrust, Prague Basin. Geosci Front, 12: 101143

    Article  Google Scholar 

  • Rochelle-Bates N, Roberts N M W, Sharp I, Freitag U, Verwer K, Halton A, Fiordalisi E, van Dongen B E, Swart R, Ferreira C H, Dixon R, Schröder S. 2021. Geochronology of volcanically associated hydrocarbon charge in the pre-salt carbonates of the Namibe Basin, Angola. Geology, 49: 335–340

    Article  Google Scholar 

  • Schaltegger U, Schmitt A K, Horstwood M S A. 2015. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chem Geol, 402: 89–110

    Article  Google Scholar 

  • Shen A, Hu A, Cheng T, Liang F, Pan W, Feng Y, Zhao J. 2019. Laser ablation in situ U−Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Pet Explor Dev, 46: 1127–1140

    Article  Google Scholar 

  • Smith P E, Farquhar R M, Hancock R G. 1991. Direct radiometric age determination of carbonate diagenesis using U−Pb in secondary calcite. Earth Planet Sci Lett, 105: 474–491

    Article  Google Scholar 

  • Vermeesch P. 2018. IsoplotR: A free and open toolbox for geochronology. Geosci Front, 9: 1479–1493

    Article  Google Scholar 

  • Woodhead J, Hellstrom J, Maas R, Drysdale R, Zanchetta G, Devine P, Taylor E. 2006. U−Pb geochronology of speleothems by MC-ICPMS. Quat Geochronol, 1: 208–221

    Article  Google Scholar 

  • Woodhead J, Hellstrom J, Pickering R, Drysdale R, Paul B, Bajo P. 2012. U and Pb variability in older speleothems and strategies for their chronology. Quat Geochronol, 14: 105–113

    Article  Google Scholar 

  • Woodhead J, Petrus J. 2019. Exploring the advantages and limitations of in situ U−Pb carbonate geochronology using speleothems. Geochronology, 1: 69–84

    Article  Google Scholar 

  • Wu C C, Burger M, Günther D, Shen C C, Hattendorf B. 2018. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels. Anal Chim Acta, 1018: 54–61

    Article  Google Scholar 

  • Wu S, Xu C, Simon K, Xiao Y, Wang Y. 2017. Study on Ablation behaviors and Ablation Rates of a 193 nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analaysis (in Chinese with English Abstract). Rock Miner Anal, 36: 451–459

    Google Scholar 

  • Wu S, Wörner G, Jochum K P, Stoll B, Simon K, Kronz A. 2019. The preparation and preliminary characterisation of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for in Situ Microanalysis. Geostand Geoanal Res, 43: 567–584

    Article  Google Scholar 

  • Wu S, Yang M, Yang Y, Xie L, Huang C, Wang H, Yang J. 2020a. Improved in situ zircon U−Pb dating at high spatial resolution (5–16 µm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones. Int J Mass Spectrom, 456: 116394

    Article  Google Scholar 

  • Wu S, Yang Y, Wang H, Huang C, Xie L, Yang J. 2020b. Characteristic performance of guard electrode in LA-SF-ICP-MS for multi-element quantification. Atom Spectro, 41: 154–161

    Article  Google Scholar 

  • Wu S, Yang Y, Jochum K P, Romer R L, Glodny J, Savov I P, Agostini S, De Hoog J C M, Peters S T M, Kronz A, Zhang C, Bao Z, Wang X, Li Y, Tang G, Feng L, Yu H, Li Z, Zhang L, Lin J, Zeng Y, Xu C, Wang Y, Cui Z, Deng L, Xiao J, Liu Y, Xue D, Zhang D, Jia L, Wang H, Xu L, Huang C, Xie L, Pack A, Wörner G, He M, Li C, Yuan H, Huang F, Li Q, Yang J, Li X, Wu F. 2021. Isotopic Compositions (Li−B−Si−O−Mg−Sr−Nd−Hf−Pb) and Fe2+/ΣFe Ratios of Three Synthetic Andesite Glass Reference Materials (ARM-1, ARM-2, ARM-3). Geostand Geoanal Res, 45: 719–745

    Article  Google Scholar 

  • Yang M, Yang Y H, Wu S T, Romer R L, Che X D, Zhao Z F, Li W S, Yang J H, Wu F Y, Xie L W, Huang C, Zhang D, Zhang Y. 2020. Accurate and precise in situ U−Pb isotope dating of wolframite series minerals via LA-SF-ICP-MS. J Anal At Spectrom, 35: 2191–2203

    Article  Google Scholar 

  • Yang P, Wu G, Nuriel P, Nguyen A D, Chen Y, Yang S, Feng Y, Ren Z, Zhao J. 2021. In situ LA-ICPMS U−Pb dating and geochemical characterization of fault-zone calcite in the central Tarim Basin, northwest China: Implications for fluid circulation and fault reactivation. Chem Geol, 568: 120125

    Article  Google Scholar 

  • Yang Y, Yang M, Wang H, Yang J, Wu F. 2021. Methodology for in situ wolframite U−Pb dating and its application. Sci China Earth Sci, 64: 187–190

    Article  Google Scholar 

  • Yokoyama T, Kimura J, Mitsuguchi T, Danhara T, Hirata T, Sakata S, Iwano H, Maruyama S, Chang Q, Miyazaki T, Murakami H, Saito-Kokubu Y. 2018. U−Pb dating of calcite using LA-ICP-MS: Instrumental setup for non-matrix-matched age dating and determination of analytical areas using elemental imaging. Geochem J, 52: 531–540

    Article  Google Scholar 

  • Zhang L, Zhu D, Yang Y, Wang Q, Xie J, Zhao Z. 2021. U−Pb geochronology of carbonate by Laser Ablation MC-ICPMS: Method improvements and geological applications. At Spectrom, 42: 335–348

    Google Scholar 

Download references

Acknowledgements

Perach NURIEL, Victor POLYAK and Marcel GUILLONG are acknowledged for providing the ASH-15, Duff Brown Tank, and JT RMs, respectively. Hongxia MA is thanked for sample preparation. Liangliang ZHANG is thanked for the providing of LA-MC-ICP-MS data. This work was co-supported by the National Key R&amp;D Program of China (Grant No. 2018YFA0702602), the National Natural Science Foundation of China (Grant Nos. 41903024, 41525012), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2022066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueheng Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Yang, Y., Roberts, N.M.W. et al. In situ calcite U−Pb geochronology by high-sensitivity single-collector LA-SF-ICP-MS. Sci. China Earth Sci. 65, 1146–1160 (2022). https://doi.org/10.1007/s11430-021-9907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9907-1

Keywords

Navigation