Skip to main content
Log in

Material records for Mesozoic destruction of the North China Craton by subduction of the Paleo-Pacific slab

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

It is well known that the destruction of the North China Carton (NCC) is closely related to subduction of the Paleo-Pacific slab, but materials recording such subduction has not been identified at the peak time of decratonization. This paper presents data of whole-rock major and trace elements and Sr-Nd-Hf isotopes and zircon U-Pb ages and Hf-O isotopes for Mesozoic volcanic rocks from the Liaodong-Jinan region in the northeastern NCC, in order to trace the subduction-related materials in their source and origin. The Mesozoic volcanic rocks in the Liaodong-Jinan region are mainly composed of two series of rocks, including alkaline basaltic trachyandesite, trachyandesite and trachyte, and subalkaline trachyandesite and andesite. Zircon U-Pb dating yields eruption ages of 129–124 Ma for these rocks. The Early Cretaceous volcanic rocks are all enriched in LILEs (such as Rb, Sr, Ba and Th) and LREEs, depleted in HFSEs (such as Nb, Ta and Ti), indicating that they were originated from mantle sources that had been modified by subducted crustal materials. However, they have relatively heterogeneous and variable isotopic compositions. The alkaline basaltic trachyandesite, trachyandesite and trachyte have enriched whole-rock Sr-Nd-Hf and zircon Hf isotopic compositions and mantle-like δ18O values, suggesting that they were derived from low-degree partial melting of an isotopically enriched lithospheric mantle source. In contrast, the subalkaline trachyandesite and andesite have relatively depleted isotopic compositions with zircon εHf(t) values up to +5.2 and heavy zircon O isotopic compositions with δ18O values of +8.1‰ to +9.09‰, indicating that they were originated from a lithospheric mantle source that had been metasomatized by melts/fluids derived from the recycled low-T altered oceanic basalt. All of these geochemical features suggest that the Early Cretaceous volcanic rocks in the Liaodong-Jinan region would result from mixing of mafic magmas with different compositions. Such magmas were originated from the enriched lithospheric mantle and the young metasomatized mantle, respectively, with variable extents of enrichment and depletion in trace elements, radiogenic isotopes and O isotopes. Importantly, the identification of the low-T altered oceanic crust component in the origin of Early Cretaceous volcanic rocks by the zircon Hf-O isotopes provides affirmative isotopic evidence and direct material records for Mesozoic subduction of the Paleo-Pacific slab that induced decratonization of the North China Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 148: 243–258

    Google Scholar 

  • Boehnke P, Watson E B, Trail D, Harrison T M, Schmitt A K. 2013. Zircon saturation re-revisited. Chem Geol, 351: 324–334

    Google Scholar 

  • Dai L Q, Zheng Y F, Zhao Z F. 2016. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos, 240–243: 327–336

    Google Scholar 

  • Dong S W, Zhang Y J, Long C X, Yang Z Y, Ji Q, Wang T, Hu J M, Chen X H. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement (in Chinese). Acta Geol Sin, 81: 1149–1461

    Google Scholar 

  • Dong S W, Zhang Y Q, Zhang F Q, Cui J J, Chen X H, Zhang S H, Huang S Q. 2015. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution. J Asian Earth Sci, 114: 750–770

    Google Scholar 

  • Eiler J M. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem, 43: 319–364

    Google Scholar 

  • Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: Where is the Archaean Keel? J Petrol, 41: 933–950

    Google Scholar 

  • Foley S F. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28: 435–453

    Google Scholar 

  • Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos, 48: 237–262

    Google Scholar 

  • Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 198: 307–322

    Google Scholar 

  • Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53

    Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China Craton. Nature, 432: 892–897

    Google Scholar 

  • Gervasoni F, Klemme S, Rocha-Júnior E R V, Berndt J. 2016. Zircon saturation in silicate melts: A new and improved model for aluminous and alkaline melts. Contrib Mineral Petrol, 171: 21

    Google Scholar 

  • Gill J B. 1981. Bulk Chemical Composition of Orogenic Andesites. In: Orogenic Andesites and Plate Tectonics, Minerals and Rocks. Berlin: Springer. 16: 97–167

    Google Scholar 

  • Gregory R T, Taylor Jr. H P. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res, 86: 2737–2755

    Google Scholar 

  • Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 64: 133–147

    Google Scholar 

  • Griffin W L, Zhang A D, O’Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Geodyn Ser, 27: 107–126

    Google Scholar 

  • Jahn B, Wu F, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 157: 119–146

    Google Scholar 

  • Jiang Y H, Jiang S, Zhao K, Ni P, Ling H, Liu D. 2005. SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath eastern China. Chin Sci Bull, 50: 2612–2620

    Google Scholar 

  • Kepezhinskas P, McDermott F, Defant M J, Hochstaedter A, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C, Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61: 577–600

    Google Scholar 

  • Kuang Y S, Wei X, Hong L B, Ma J L, Pang C J, Zhong Y T, Zhao J X, Xu Y G. 2012. Petrogenetic evaluation of the Laohutai basalts from North China Craton: Melting of a two-component source during lithospheric thinning in the Late Cretaceous-Early Cenozoic. Lithos, 154: 68–82

    Google Scholar 

  • Le Maitre R W. 2002. Igneous Rocks: A Classification and Glossary of Terms. 2nd ed. Cambridge: Cambridge University Press. 236

    Google Scholar 

  • Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental Mantle. Annu Rev Earth Planet Sci, 39: 59–90

    Google Scholar 

  • Li C, van der Hilst R D. 2010. Structure of the upper Mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308

    Google Scholar 

  • Li S, Wang Y. 2018. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China craton—Geodynamic effects of deep recycled carbon. Sci China Earth Sci, 61: 853–868

    Google Scholar 

  • Li X H, Li W X, Wang X C, Li Q L, Liu Y, Tang G Q. 2009a. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints. Sci China Ser D-Earth Sci, 52: 1262–1278

    Google Scholar 

  • Li X H, Liu Y, Li Q L, Guo C H, Chamberlain K R. 2009b. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst, 10: Q06011

    Google Scholar 

  • Li X H, Long W G, Li Q L, Liu Y, Zheng Y F, Yang Y H, Chamberlain K R, Wan D F, Guo C H, Wang X C, Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostand Geoanal Res, 34: 117–134

    Google Scholar 

  • Li X H, Tang G Q, Gong B, Yang Y H, Hou K J, Hu Z C, Li Q L, Liu Y, Li W X. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin Sci Bull, 58: 4647–4654

    Google Scholar 

  • Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339

    Google Scholar 

  • Liu X M. 2004. Geochemical research on the Mesozoic crust-mantle interaction in the North China craton. Dissertation for Doctoral Degree. Xi’an: Northwest University. 1–96

    Google Scholar 

  • Ludwig K R. 2001. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Pub 4

  • Ma Q, Xu Y G, Zheng J P, Griffin W L, Hong L B, Ma L. 2016. Coexisting Early Cretaceous high-Mg andesites and adakitic rocks in the North China Craton: The role of water in intraplate magmatism and cratonic destruction. J Petrol, 57: 1279–1308

    Google Scholar 

  • Mattey D, Lowry D, Macpherson C. 1994. Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett, 128: 231–241

    Google Scholar 

  • Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 369: 155–174

    Google Scholar 

  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc Lond Spec Publ, 76: 71–81

    Google Scholar 

  • Okay A I, Şengör C A M. 1992. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology, 20: 411–414

    Google Scholar 

  • Pang C J, Wang X C, Xu Y G, Wen S N, Kuang Y S, Hong L B. 2015. Pyroxenite-derived Early Cretaceous lavas in the Liaodong Peninsula: Implication for metasomatism and thinning of the lithospheric mantle beneath North China Craton. Lithos, 227: 77–93

    Google Scholar 

  • Pei F P. 2005. Petrology and geochemistry of Mesozoic volcanic rocks in Southern Jilin Province. Dissertation for Master’s Degree. Jilin: Jilin University. 1–68

    Google Scholar 

  • Peslier A H, Woodland A B, Bell D R, Lazarov M. 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81

    Google Scholar 

  • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247–263

    Google Scholar 

  • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett, 219: 311–324

    Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42: 313–345

    Google Scholar 

  • Valley J W, Chiarenzelli J R, McLelland J M. 1994. Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett, 126: 187–206

    Google Scholar 

  • Wang W, Xu W L, Wang D Y, Ji W Q, Yang D B, Pei F P. 2007. Caiyuanzi Paleogene basalts and deep-derived xenocrysts in Eastern Liaoning, China: Constraints on nature and deep process of the Cenozoic lithospheric mantle. J Mineral Petrol, 27: 63–70

    Google Scholar 

  • Woodhead J D, Hergt J M. 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res, 29: 183–195

    Google Scholar 

  • Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in Eastern China. Earth Planet Sci Lett, 233: 103–119

    Google Scholar 

  • Wu F Y, Yang J H, Liu X M. 2005b. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China (in Chinese). Geol J China Univ, 11: 305–317

    Google Scholar 

  • Wu F Y, Yang J H, Wilde S A, Zhang X O. 2005c. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 221: 127–156

    Google Scholar 

  • Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 234: 105–126

    Google Scholar 

  • Wu F Y, Yang J H, Xu Y G, Wilde S A, Walker R J. 2019. Destruction of the North China Craton in the Mesozoic. Annu Rev Earth Planet Sci, 47: 173–195

    Google Scholar 

  • Wu F Y, Zhang Y B, Yang J H, Xie L W, Yang Y H. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Res, 167: 339–362

    Google Scholar 

  • Xie L W, Yang J H, Wu F Y, Yang Y H, Wilde S A. 2011. PbSL dating of garnet and staurolite: Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton. J Asian Earth Sci, 42: 142–154

    Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in China: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Google Scholar 

  • Xu Y G. 2014. Recycled oceanic crust in the source of 90–40 Ma basalts in north and northeast China: Evidence, provenance and significance. Geochim Cosmochim Acta, 143: 49–67

    Google Scholar 

  • Xu Y G, Ma J L, Huang X L, Iizuka Y, Chung S L, Wang Y B, Wu X Y. 2004. Early Cretaceous gabbroic complex from Yinan, Shandong Province: Petrogenesis and mantle domains beneath the North China Craton. Int J Earth Sci-Geol Rundsch, 93: 1025–1041

    Google Scholar 

  • Xu Y G, Zhang H H, Qiu H N, Ge W C, Wu F Y. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the Mantle transition zone? Chem Geol, 328: 168–184

    Google Scholar 

  • Yang D B, Xu W L, Pei F P, Yang C H, Wang Q H. 2012. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic Mafic igneous rocks. Lithos, 136–139: 246–260

    Google Scholar 

  • Yang J H, O’Reilly S, Walker R J, Griffin W, Wu F Y, Zhang M, Pearson N. 2010. Diachronous decratonization of the Sino-Korean Craton: Geochemistry of mantle xenoliths from North Korea. Geology, 38: 799–802

    Google Scholar 

  • Yang J H, Sun J F, Chen F, Wilde S A, Wu F Y. 2007a. Sources and petrogenesis of late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of the eastern North China Craton. J Petrol, 48: 1973–1997

    Google Scholar 

  • Yang J H, Sun J F, Zhang J H, Wilde S A. 2012a. Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U-Pb age and Hf-O isotope evidence. Lithos, 153: 108–128

    Google Scholar 

  • Yang J H, Sun J F, Zhang M, Wu F Y, Wilde S A. 2012b. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chem Geol, 328: 149–167

    Google Scholar 

  • Yang J H, Wu F Y, Chung S L, Lo C H, Wilde S A, Davis G A. 2007b. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geol Soc Am Bull, 119: 1405–1414

    Google Scholar 

  • Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol Rev, 23: 125–152

    Google Scholar 

  • Yang J H, Wu F Y, Wilde S A, Belousova E, Griffin W L. 2008. Mesozoic decratonization of the North China block. Geology, 36: 467–470

    Google Scholar 

  • Yang J H, Wu F Y, Wilde S A, Liu X M. 2007c. Petrogenesis of late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong peninsula, North China Craton. Chem Geol, 242: 155–175

    Google Scholar 

  • Yang J H, Wu F Y, Wilde S A, Xie L W, Yang Y H, Liu X M. 2007d. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol, 153: 177–190

    Google Scholar 

  • Yang Y H, Wu F Y, Wilde S A, Liu X M, Zhang Y B, Xie L W, Yang J H. 2009. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem Geol, 264: 24–42

    Google Scholar 

  • Yang Y H, Zhang H F, Chu Z Y, Xie L W, Wu F Y. 2010. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int J Mass Spectrom, 290: 120–126

    Google Scholar 

  • Yang Y H, Zhang H F, Liu Y, Xie L W, Qi C S, Tu X L. 2007a. One column procedure for Hf purification in geological samples using anion exchange chromatography and its isotopic analyses by MC-ICP-MS (in Chinese). Acta Petrol Sin, 23: 227–232

    Google Scholar 

  • Yang Y H, Zhang H F, Wu F Y, Xie L W, Zhang Y B. 2005. Accurate measurement of Strontium isotopic composition by Neptune Multiple Collector Inductively Coupled Plasma Mass Spectrometry (in Chinese). J Chin Mass Spectrom Soci, 26: 215–221

    Google Scholar 

  • Yang Y H, Zhang H F, Xie L W, Wu F Y. 2007b. Accurate measurement of Neodymium isotopic composition using Neptune Multiple Collector Inductively Coupled Plasma Mass Spectrometry (in Chinese). Chin J Anal Chem, 35: 71–74

    Google Scholar 

  • Zeh A, Gerdes A, Klemd R, Barton J M. 2007. Achaean to Proterozoic crustal evolution in the central zone of the Limpopo Belt (South Africa-Botswana): Constraints from combined U-Pb and Lu-Hf isotope analyses of zircon. J Petrol, 48: 1605–1639

    Google Scholar 

  • Zhang H F, Goldstein S L, Zhou X H, Sun M, Cai Y. 2009. Comprehensive refertilization of lithospheric mantle beneath the North China Craton: Further Os-Sr-Nd isotopic constraints. J Geol Soc, 166: 249–259

    Google Scholar 

  • Zhang H F, Goldstein S L, Zhou X H, Sun M, Zheng J P, Cai Y. 2008. Evolution of subcontinental lithospheric Mantle beneath eastern China: Re-Os isotopic evidence from Mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 155: 271–293

    Google Scholar 

  • Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241–254

    Google Scholar 

  • Zhang H F, Yang Y H. 2007. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern north China craton. Acta Petrol Sin, 23: 285–294

    Google Scholar 

  • Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric Mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326

    Google Scholar 

  • Zhang Y Q, Dong S W, Zhao Y, Zhang T. 2010. Jurassic tectonics of North China: A synthetic view. Acta Geol Sin-Engl Ed, 82: 310–326

    Google Scholar 

  • Zhao G, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Google Scholar 

  • Zheng J P. 1999. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning beneath Eastern China. Wuhan: China University of Geosciences Press. 126

    Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Google Scholar 

  • Zheng Y F, Fu B. 1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochem J, 32: 71–89

    Google Scholar 

  • Zheng Y F, Xiao W J, Zhao G. 2013. Introduction to tectonics of China. Gondwana Res, 23: 1189–1206

    Google Scholar 

  • Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385

    Google Scholar 

  • Zhu G, Jiang D Z, Zhang B L, Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res, 22: 86–103

    Google Scholar 

  • Zhu G, Niu M L, Xie C L, Wang Y S. 2010. Sinistral to normal faulting along the Tan-Lu Fault Zone: Evidence for geodynamic switching of the East China continental margin. J Geol, 118: 277–293

    Google Scholar 

  • Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 58: 1523–1537

    Google Scholar 

  • Zhu R X, Yang J H, Wu F Y. 2012. Timing of destruction of the north China craton. Lithos, 149: 51–60

    Google Scholar 

  • Zhu Y S, Yang J H, Sun J F, Wang H. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45: 407–410

    Google Scholar 

  • Zhu Y S, Yang J H, Sun J F, Zhang J H, Wu F Y. 2016. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. J Asian Earth Sci, 117: 184–207

    Google Scholar 

  • Zindler A, Hart S. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493–571

    Google Scholar 

Download references

Acknowledgements

We thank the editor-in-chief and two anonymous reviewers for their comments and suggestions, Profs. Yue-Heng Yang and Qiu-Li Li for helping with zircon U-Pb dating and Hf-O isotope analysis. This work was supported by the Ministry of Science and Technology of People’s Republic of China (Grant No. 2016YFC0600109) and the National Natural Science Foundation of China (Grant No. 41688103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Yang, J., Sun, J. et al. Material records for Mesozoic destruction of the North China Craton by subduction of the Paleo-Pacific slab. Sci. China Earth Sci. 63, 690–700 (2020). https://doi.org/10.1007/s11430-019-9564-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9564-4

Keywords

Navigation