Skip to main content
Log in

Subsistence strategies of prehistoric hunter-gatherers on the Tibetan Plateau during the Last Deglaciation

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The study of prehistoric hunter-gatherer subsistence strategies on the Tibetan Plateau is important for understanding the mechanisms and processes of human adaption to high altitude environments. But to date, only a few Paleolithic sites have been found on the Tibetan Plateau with clear stratigraphy and reliable dating. These sites are mainly distributed in the Qinghai Lake Basin on the northeastern part of the plateau, and the sporadic fauna and flora remains excavated provide limited information about the subsistence strategies of hunter-gatherers. In 2014, relatively abundant animal remains were unearthed in the Lower Cultural Layer (LCL, 15400–13100 cal yr BP) of the “151 site” located in the Qinghai Lake Basin, providing important information about human subsistence strategies on the Tibetan Plateau during the Last Deglaciation. Zooarchaeological analysis of these faunal remains indicates that hunter-gatherers at the “151 site” mainly targeted large ungulates of Bos and wild horse/ass, and only brought back the most nutritious parts of animal carcasses including upper and intermediate limb bones, heads, and trunks (ribs and vertebrae). People then processed and consumed the carcasses around single hearths. Our comprehensive analyses of contemporaneous sites in the Qinghai Lake Basin show that a subsistence strategy involving opportunistic hunting of ungulates, high mobility, and short occupation of campsites was used by terminal Pleistocene hunter-gatherers to adapt to the high-altitude environment on the Tibetan Plateau. This subsistence strategy may have been a first step of gradual hunter-gatherer adaptation to the extreme conditions on the Tibetan Plateau after the Last Glacial Maximum, and laid the foundation for the widespread distribution of hunter-gatherers on the plateau during the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Z M, Yi Z S, Li B Y. 1979. Palaeoliths and microliths from Shenja and Shuanghu, Northern Tibet (in Chinese). Archaeology, (6): 481–491

  • Andrews P. 1990. Owls, Caves and Fossils: Predation, Preservation, and Accumulation of Small Mammal Bones in Caves, with an Analysis of the Pleistocene Cave Faunas from Westbury-sub-Mendip, Somerset, UK. Chicago: University of Chicago Press

    Google Scholar 

  • Barba R, Domínguez-Rodrigo M. 2005. The taphonomic relevance of the analysis of bovid long limb bone shaft features and their application to element identification. J Taphonomy, 3: 17–42

    Google Scholar 

  • Behrensmeyer A K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology, 4: 150–162

    Google Scholar 

  • Behrensmeyer A K. 1991. Terrestrial vertebrate accumulations. In: Allison P A, Briggs D E G, eds. Taphonomy: Releasing the Data Locked in the Fossil Record. New York: Plenum Press. 291–335

    Google Scholar 

  • Binford L R. 1978. Nunamiut Ethnoarchaeology. New York: Academic Press

    Google Scholar 

  • Binford L R. 1996. Hearth and home, the spatial analysis of ethnographically documented rock shelter occupations as a template for distinguishing between human and hominid use of sheltered space. In: Conard N, Wendorf F, eds. Middle Paleolithic and Middle Stone Age Settlement Systems. Forlí: A.B.A.C.O Edizioni. 229–239

    Google Scholar 

  • Blumenschine R J, Marean C W, Capaldo S D. 1996. Blind tests of interanalyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J Archaeol Sci, 23: 493–507

    Google Scholar 

  • Brain C K. 1981. The Hunters or the Hunted? Chicago: University of Chicago Press

    Google Scholar 

  • Brantingham P J, Ma H Z, Olsen J W, Gao X, Madsen D B, Rhode D E. 2003. Speculation on the timing and nature of Late Pleistocene hunter-gatherer colonization of the Tibetan Plateau. Chin Sci Bull, 48: 1510–1516

    Google Scholar 

  • Brantingham P J, Gao X. 2006. Peopling of the northern Tibetan Plateau. World Archaeol, 38: 387–414

    Google Scholar 

  • Brantingham P J, Rhode D, Madsen D B. 2010. Archaeology augments Tibet’s genetic history. Science, 329: 1467

    Google Scholar 

  • Bunn H T. 1993. Bone assemblages at base camps: A further consideration of carcass transport and bone destruction by the Hadza. In: Hudson J, ed. From Bones to Behavior: Ethnoarchaeological and Experimental Contributions to the Interpretation of Faunal Remains. Carbonadale: Center for Archaeological Investigations. 156–168

    Google Scholar 

  • Bunn H T. 2001. Hunting, power scavenging, and butchering by Hadza foragers and by Plio-Pleistocene Homo. In: Stanford C B, Bunn H T, eds. Meat-eating and Human Evolution. Oxford: Oxford University Press. 199–218

    Google Scholar 

  • Bunn H T, Kroll E M, Ambrose S H, Behrensmeyer A K, Binford L R, Blumenschine R J, Klein R G, McHenry H M, O’Brien C J, Wymer J J. 1986. Systematic butchery by Plio/Pleistocene hominids at Olduvai Gorge, Tanzania (and comments and reply). Curr Anthropol, 27: 431–452

    Google Scholar 

  • Burger O, Hamilton M J, Walker R. 2005. The prey as patch model: Optimal handling of resources with diminishing returns. J Archaeol Sci, 32: 1147–1158

    Google Scholar 

  • Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K. 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 347: 248–250

    Google Scholar 

  • Chen F H, Welker F, Shen C C, Bailey S E, Bergmann I, Davis S, Xia H, Wang H, Fischer R, Freidline S E, Yu T L, Skinner M M, Stelzer S, Dong G R, Fu Q M, Dong G H, Wang J, Zhang D J, Hublin J J. 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569: 409–412

    Google Scholar 

  • Colman S M, Yu S Y, An Z, Shen J, Henderson A C G. 2007. Late Cenozoic climate changes in China’s western interior: A review of research on lake Qinghai and comparison with other records. Quat Sci Rev, 26: 2281–2300

    Google Scholar 

  • Fernandez P, Legendre S. 2003. Mortality curves for horses from the Middle Palaeolithic site of Bau de l’Aubesier (Vaucluse, France): Methodological, palaeo-ethnological, and palaeo-ecological approaches. J Archaeol Sci, 30: 1577–1598

    Google Scholar 

  • Freeman L. 1978. Mousterian worked bone from Cueva Morin (Santander, Spain), a preliminary description. In: Freeman L G, ed. Views of the Past: Essays in Old World Prehistory and Paleoanthropology. Chicago: Aldine. 29–52

    Google Scholar 

  • Gao X, Zhou Z Y, Guan Y. 2008. Human cultural remains and adaptation strategies in the Tibetan Plateau margin region in the late Pleistocene (in Chinese). Quat Sci, 28: 969–977

    Google Scholar 

  • Haesaerts P, Damblon F, Nigst P, Hublin J J. 2013. ABA and ABOx radiocarbon cross-dating on charcoal from Middle Pleniglacial loess deposits in Austria, Moravia, and Western Ukraine. Radiocarbon, 55: 641–647

    Google Scholar 

  • Hall J N. 2007. Late prehistoric (Oneota) exploitation of bison, elk, and deer at the Howard Goodhue site, central Iowa. Dissertation for Master’s Degree. Iowa: University of Iowa

    Google Scholar 

  • Henry D. 2012. The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure. Quat Int, 247: 246–266

    Google Scholar 

  • Huerta-Sánchez E, Jin X, Asan X, Bianba Z, Peter B M, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang X, Luosang J, Cuo Z X P, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512: 194–197

    Google Scholar 

  • Jöris O, Fernandez E, Weninger B. 2003. Radiocarbon evidence of the Middle to Upper Paleolithic transition in southwestern Europe. Trabajos de Prehistoria, 60: 15–38

    Google Scholar 

  • Kelly R L, Poyer L, Tucker B. 2005. An ethnoarchaeological study of mobility, architectural investment, and food sharing among Madagascar’s Mikea. Am Anthropol, 107: 403–416

    Google Scholar 

  • Klein R G, Cruz-Uribe K. 1984. The Analysis of Animal Bones from Archaeological Sites. Chicago: Chicago University Press

    Google Scholar 

  • Lupo K D. 1995. Hadza bone assemblages and hyena attrition: An ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. J Anthropol Archaeol, 14: 288–314

    Google Scholar 

  • Lupo K D. 2006. What explains the carcass field processing and transport decisions of contemporary hunter-gatherers? Measures of economic anatomy and zooarchaeological skeletal part representation. J Archaeol Method Theor, 13: 19–66

    Google Scholar 

  • Lyman L R. 1994. Vertebrate Taphonomy. Cambridge: Cambridge University Press

    Google Scholar 

  • Ma M M, Dong G H, Jia X, Wang H, Cui Y F, Chen F H. 2016. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes. Quat Sci Rev, 145: 57–70

    Google Scholar 

  • Madsen D B, Ma H Z, Brantingham P J, Xing G, Rhode D, Haiying Z, Olsen J W. 2006. The Late Upper Paleolithic occupation of the northern Tibetan Plateau margin. J Archaeol Sci, 33: 1433–1444

    Google Scholar 

  • Madsen D B, Perreault C, Rhode D, Sun Y J, Yi M J, Brunson K, Brantingham P J. 2017. Early foraging settlement of the Tibetan Plateau highlands. Archaeol Res Asia, 11: 15–26

    Google Scholar 

  • Marean C W, Cleghorn N. 2003. Large mammal skeletal element transport: Applying foraging theory in a complex taphonomic system. J Taphonomy, 1: 15–42

    Google Scholar 

  • Marean C W, Domínguez-Rodrigo M, Pickering T R. 2004. Skeletal element equifinality in zooarchaeology begins with method: The evolution and status of the “shaft critique”. J Taphonomy, 2: 69–98

    Google Scholar 

  • Meyer M C, Aldenderfer M S, Wang Z, Hoffmann D L, Dahl J A, Degering D, Haas W R, Schlütz F. 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 355: 64–67

    Google Scholar 

  • O’Connell J F. 1987. Alyawara site structure and its archaeological implications. Am Antiq, 52: 74–108

    Google Scholar 

  • O’Connell J F, Hawkes K, Jones B N. 1991. Distribution of refuse-producing activities at Hadza residential base camps: Implications for analyses of archaeological site structure. In: Kroll E M, Price T D, eds. The Interpretation of Archaeological Spatial Patterning. New York: Plenum Press. 61–76

    Google Scholar 

  • Reimer P J, Baillie M G L, Bard E, Bayliss A, Beck J W, Blackwell P G, Bronk Ramsey C, Buck C E, Burr G S, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kaiser K F, Kromer B, McCormac F G, Manning S W, Reimer R W, Richards D A, Southon J R, Talamo S, Turney C S M, van der Plicht J, Weyhenmeyer C E. 2013. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50000 years cal BP. Radiocarbon, 51: 1111–1150

    Google Scholar 

  • Rhode D, Brantingham P J, Perreault C, Madsen D B. 2014. Mind the gaps: Testing for hiatuses in regional radiocarbon date sequences. J Archaeol Sci, 52: 567–577

    Google Scholar 

  • Shen J, Liu X Q, Wang S M, Matsumoto R. 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years. Quat Int, 136: 131–140

    Google Scholar 

  • Shi X H, Li F X, Cairang Z X, Guo A H, Da C R, Tang H Y. 2006. The variation of sonwcover and snow disaster in Qinghai during in 1961–2004 (in Chinese). J Appl Meteorol Sci, 17: 376–382

    Google Scholar 

  • Smith E A, Bettinger R L, Bishop C A, Blundell V, Cashdan E, Casimir M J, Christenson A L, Cox B, Dyson-Hudson R, Hayden B, Richerson P J, Roth E A, Simms S R, Stini W A. 1983. Anthropological applications of optimal foraging theory: A critical review (and comments and reply). Curr Anthropol, 24: 625–651

    Google Scholar 

  • Stiner M C. 2002. On in situ attrition and vertebrate body part profiles. J Archaeol Sci, 29: 979–991

    Google Scholar 

  • Stiner M C, Barkai R, Gopher A. 2009. Cooperative hunting and meat sharing 400−200 kya at Qesem Cave, Israel. Proc Natl Acad Sci USA, 106: 13207–13212

    Google Scholar 

  • Tang H S. 1999. Short discussion of paleolithics and microlithics on the Tibetan Plateau (in Chinese). Archaeology, (5): 428–438

  • Vaquero M, Pastó I. 2001. The definition of spatial units in Middle Palaeolithic sites: The hearth-related assemblages. J Archaeol Sci, 28: 1209–1220

    Google Scholar 

  • Vehik S C. 1977. Bone fragments and bone grease manufacturing: A review of their archaeological use and potential. Plains Anthropol, 22: 169–182

    Google Scholar 

  • Villa P, Mahieu E. 1991. Breakage patterns of human long bones. J Human Evol, 21: 27–48

    Google Scholar 

  • Winterhalder B. 1986. Diet choice, risk, and food sharing in a stochastic environment. J Anthropol Archaeol, 5: 369–392

    Google Scholar 

  • Yellen J E. 1977. Archaeological Approaches to the Present. New York: Academic Press

    Google Scholar 

  • Yi M J, Gao X, Zhang X L, Sun Y J, Brantingham P J, Madsen B D, Rhode D. 2011. A preliminary report on investigations in 2009 of some Prehistoric sites in the Tibetan Plateau marginal region (in Chinese). Acta Anthropol Sin, 30: 124–136

    Google Scholar 

  • Yi M J, Gao X, Li F, Chen F Y. 2016. Rethinking the origin of microblade technology: A chronological and ecological perspective. Quat Int, 400: 130–139

    Google Scholar 

  • Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo Z X P, Pool J E, Xu X, Jiang H, Vinckenbosch N, Korneliussen T S, Zheng H C, Liu T, He W M, Li K, Luo R B, Nie X F, Wu H L, Zhao M R, Cao H Z, Zou J, Shan Y, Li S Z, Yang Q, AsanNi P X, Tian G, Xu J M, Liu X A, Jiang T, Wu R H, Zhou G Y, Tang M F, Qin J J, Wang T, Feng S J, Li G H, HuasangLuosang J B, Wang W, Chen F, Wang Y D, Zheng X G, Li Z, Bianba Z M, Yang G, Wang X P, Tang S H, Gao G Y, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q H, Ouyang W H, Ren X L, Liang H Q, Zheng H S, Huang Y B, Li J X, Bolund L, Kristiansen K, Li Y R, Zhang Y, Zhang X Q, Li R Q, Li S G, Yang H M, Nielsen R, Wang J, Wang J A. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329: 75–78

    Google Scholar 

  • Yu J Q, Kelts K R. 2002. Abrupt changes in climatic conditions across the late-glacial/Holocene transition on the N. E. Tibet-Qinghai Plateau: Evidence from Lake Qinghai, China. J Paleolimnol, 28: 195–206

    Google Scholar 

  • Yuan B Y, Huang W W, Zhang D. 2007. New evidence of human activity in the Northern Tibetan Plateau in late Pleistocene (in Chinese). Chin Sci Bull, 52: 1567–1571

    Google Scholar 

  • Zhang D J, Dong G H, Wang H, Ren X Y, Ha P P, Qiang M R, Chen F H. 2016. History and possible mechanisms of prehistoric human migration to the Tibetan Plateau. Sci China Earth Sci, 59: 1765–1778

    Google Scholar 

  • Zhang D J, Zhang N M, Wang J, Ha B B, Dong G H, Chen F H. 2017. Comment on “Permanent human occupation of the central Tibetan Plateau in the early Holocene”. Science, 357: eaam8273

    Google Scholar 

  • Zhang D J, Xia H, Chen F H. 2018. Early human occupation of the Tibetan Plateau. Chin Sci Bull, 63: 1598–1600

    Google Scholar 

  • Zhang S Q, Zhang Y, Li J S, Gao X. 2016. The broad-spectrum adaptations of hominins in the later period of Late Pleistocene of China—Perspectives from the zooarchaeological studies. Sci China Earth Sci, 59: 1529–1539

    Google Scholar 

  • Zhang X L, Ha B B, Wang S J, Chen Z J, Ge J Y, Long H, He W, Da W, Nian X M, Yi M J, Zhou X Y, Zhang P Q, Jin Y S, Bar-Yosef O, Olsen J W, Gao X. 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 362: 1049–1051

    Google Scholar 

  • Zilhão J, d’Errico F. 1999. The chronology and taphonomy of the earliest Aurignacian and its implications for the understanding of Neanderthal extinction. J World Prehist, 13: 1–68

    Google Scholar 

Download references

Acknowledgements

We thank Yifu Cui, Haiming Li, Wenjie Fan, Yujia Liu and Xiaoman Liu for help in excavation and lab work. We thank the National Cultural Heritage Administration and the Cultural, Sports, Radio and Television Administration of Gonghe County in Qinghai Province for support for archaeological excavation. We are also grateful to Associate Professor Hua Wang from the Institute of Cultural Heritage, Shandong University, Dr. Geoffrey Michael Smith from the Department of Human Evolution of Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany) and Dr. Lele Ren from the School of History and Culture, Lanzhou University for their guidance and help in this work. We are grateful to Dr. Katherine Brunson from Wesleyan University for helpful comments and language polishing of this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41771225 & 41620104007), the Primary Supports for Scientific Research of Lanzhou University (Grant Nos. LZUJBKY-2016-254, LZUJBKY-2016-279 & LZUJBKY-2018-144) and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongju Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xia, H., Yao, J. et al. Subsistence strategies of prehistoric hunter-gatherers on the Tibetan Plateau during the Last Deglaciation. Sci. China Earth Sci. 63, 395–404 (2020). https://doi.org/10.1007/s11430-019-9519-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9519-8

Keywords

Navigation