Skip to main content
Log in

Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, we performed an integrated investigation of K and Mg isotopes in hydrothermally altered rocks from the giant Dexing porphyry Cu deposit in China. Both the altered porphyry intrusion and the surrounding wall rocks exhibit large variations in K and Mg isotope compositions, with δ41K values ranging between −1.0296‰ and 0.38‰, and δ26Mg values ranging between −0.49‰ and 0.32‰. The δ41K and δ26Mg values of the majority of altered samples are higher than the isotopic baseline values for upper continental crust. We attribute the general increase in δ41K and δ26Mg in altered rocks to hydrothermal alteration, which caused preferential incorporation of heavy K and Mg isotopes in alteration products, particularly phyllosilicates. However, a few altered samples show anomalously low δ41K and δ26Mg values. The δ41K and δ26Mg values do not correlate with K and Mg concentrations, or mineralogy of altered samples. The variable K-Mg isotope data likely reflect fluids of different physical-chemical properties, or different isotopic compositions. Based on the combined K-Mg isotope data, at least three groups of hydrothermal fluids are distinguished from the Dexing porphyry deposit. Therefore, K-Mg isotopes are potentially a novel tracer for fingerprinting fluids in complex hydrothermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey S W. 1984. Classification and structures of the micas. Rev Mineral Geochem, 13: 1–12

    Google Scholar 

  • Chen A A, Pappu R V. 2007. Quantitative characterization of ion pairing and cluster formation in strong 1:1 electrolytes. J Phys Chem B, 111: 6469–6478

    Google Scholar 

  • Chen H, Tian Z, Tuller-Ross B, Korotev R L, Wang K. 2019. High-precision potassium isotopic analysis by MC-ICP-MS: An inter-laboratory comparison and refined K atomic weight. J Anal At Spectrom, 34: 160–171

    Google Scholar 

  • Dauphas N, John S G, Rouxel O. 2017. Iron isotope systematics. Rev Mineral Geochem, 82: 415–510

    Google Scholar 

  • Elderfield H, Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci, 24: 191–224

    Google Scholar 

  • Fennell C J, Bizjak A, Vlachy V, Dill K A. 2009. Ion pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B, 113: 6782–6791

    Google Scholar 

  • Gagnevin D, Boyce A J, Barrie C D, Menuge J F, Blakeman R J. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochim Cosmochim Acta, 88: 183–198

    Google Scholar 

  • He M J, Liu X D, Lu X C, Wang R C. 2017. Molecular simulation study on K+-Cl ion pair in geological fluids. Acta Geochim, 36: 1–8

    Google Scholar 

  • Ho P C, Palmer D A. 1997. Ion association of dilute aqueous potassium chloride and potassium hydroxide solutions to 600°C and 300 MPa determined by electrical conductance measurements. Geochim Cosmochim Acta, 61: 3027–3040

    Google Scholar 

  • Hu Y, Chen X Y, Xu Y K, Teng F Z. 2018. High-precision analysis of potassium isotopes by HR-MC-ICPMS. Chem Geol, 493: 100–108

    Google Scholar 

  • Jin Z D. 1999. Geochemistry and evolution ore-forming fluids at Tongchang poprhyry copper deposit, Dexing county, Jiangxi province, Departaient of Earth Sciences (in Chinese). Dissertation for Doctoral Degree. Nanjing: Nanjing University. 114

    Google Scholar 

  • Jin Z D, Zhu J C, Ji J F, Lu X W, Li F C. 2001. Ore-forming fluid constraints on illite crystallinity (IC) at Dexing porphyry copper deposit, Jiangxi Province. Sci China Ser-D Earth Sci, 44: 177–184

    Google Scholar 

  • Johnson C M, Beard B L, Albarede F. 2004. Geochemistry of non-traditional stable isotopes. Mineralogical Society of America Geochemical Society

  • Li S L, Li W Q, Beard B L, Raymo M E, Wang X M, Chen Y, Chen J. 2019. K isotopes as a tracer for continental weathering and geological K cycling. Proc Natl Acad Sci USA, 116: 8740–8745

    Google Scholar 

  • Li W Q, Beard B L, Li S L. 2016. Precise measurement ofstable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS. J Anal At Spectrom, 31: 1023–1029

    Google Scholar 

  • Li W Q, Beard B L, Li C X, Johnson C M. 2014. Magnesium isotope fractionation between brucite [Mg(OH)2] and Mg aqueous species: Implications for silicate weathering and biogeochemical processes. Earth Planet Sci Lett, 394: 82–93

    Google Scholar 

  • Li W Q, Jackson S E, Pearson N J, Graham S. 2010. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochim Cosmochim Acta, 74: 4078–4096

    Google Scholar 

  • Li W Q, Johnson C M, Beard B L. 2012. U-Th-Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt. Earth Planet Sci Lett, 319–320: 197–206

    Google Scholar 

  • Li W Q, Kwon K D, Li S L, Beard B L. 2017. Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: Laboratory experiments and theoretical calculations. Geochim Cosmochim Acta, 214: 1–13

    Google Scholar 

  • Li W Q, Li S L, Beard B L. 2019. Geological cycling of potassium and the K isotopic response: Insights from loess and shales. Acta Geochim, 38: 508–516

    Google Scholar 

  • Li X F, Sasaki M. 2007. Hydrothermal alteration and mineralization of middle Jurassic dexing porphyry Cu-Mo deposit, Southeast China. Resour Geol, 57: 409–426

    Google Scholar 

  • Mathur R, Munk L, Nguyen M, Gregory M, Annell H, Lang J. 2013. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska. Econ Geol, 108: 529–541

    Google Scholar 

  • Morgan L E, Santiago Ramos D P, Davidheiser-Kroll B, Faithfull J, Lloyd N S, Ellam R M, Higgins J A. 2018. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ 41K. J Anal At Spectrom, 33: 175–186

    Google Scholar 

  • Pan X F, Song Y C, Li Z Q, Hu B G, Zhu X Y, Wang Z K, Yang D, Zhang T F, Li Y. 2012. Restriction of H-O iostopes for alteration and mineralization ssytem of Tongchang Cu (-Mo-Au) porphyric deposit, Jiangxi Province (in Chinese). Mineral Deposits, 31: 850–860

    Google Scholar 

  • Parendo C A, Jacobsen S B, Wang K. 2017. K isotopes as a tracer of seafloor hydrothermal alteration. Proc Natl Acad Sci USA, 114: 1827–1831

    Google Scholar 

  • Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Springer Netherlands. 1241

    Google Scholar 

  • Putnis A. 2009. Mineral replacement reactions. Rev Mineral Geochem, 70: 87–124

    Google Scholar 

  • Reed M H. 1997. Hydrothermal alteration and its relationship to ore fluid composition. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. 3rd ed. New York: Wiley. 303–366

    Google Scholar 

  • Ryu J S, Vigier N, Decarreau A, Lee S W, Lee K S, Song H, Petit S. 2016. Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation. Chem Geol, 445: 135–145

    Google Scholar 

  • Santiago-Ramos D P, Morgan L E, Lloyd N S, Higgins J A. 2018. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids. Geochim Cosmochim Acta, 236: 99–120

    Google Scholar 

  • Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem, 55: 65–111

    Google Scholar 

  • Schott J, Mavromatis V, Fujii T, Pearce C R, Oelkers E H. 2016. The control of carbonate mineral Mg isotope composition by aqueous speciation: Theoretical and experimental modeling. Chem Geol, 445: 120–134

    Google Scholar 

  • Seedorff E, Dilles J H, Proffett J M, Einaudi M T, Zurcher L, Stavast W J A, Johnson D A, Darton M D. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Econ Geol 100th Anniversary Volume. 251–298

  • Seo J H, Lee S K, Lee I. 2007. Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem Geol, 243: 225–237

    Google Scholar 

  • Sillitoe R H. 2010. Porphyry copper systems. Econ Geol, 105: 3–41

    Google Scholar 

  • Teng F Z. 2017. Magnesium isotope geochemistry. Rev Mineral Geochem, 82: 219–287

    Google Scholar 

  • Teng F Z, Dauphas N, Watkins J M. 2017. Non-traditional stable isotopes: Retrospective and prospective. Rev Mineral Geochem, 82: 1–26

    Google Scholar 

  • Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S C, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta, 74: 4150–4166

    Google Scholar 

  • Teng F Z, McDonough W F, Rudnick R L, Walker R J. 2006. Diffusion-driven extreme lithium isotopic fractionation in country rocks ofthe Tin Mountain pegmatite. Earth Planet Sci Lett, 243: 701–710

    Google Scholar 

  • Wang G G, Ni P, Yao J, Wang X L, Zhao K D, Zhu R Z, Xu Y F, Pan J Y, Li L, Zhang Y H. 2015. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: Constraints from high-Mg adakitic rocks. Ore Geol Rev, 67: 109–126

    Google Scholar 

  • Wang K, Jacobsen S B. 2016. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts. Geochim Cosmochim Acta, 178: 223–232

    Google Scholar 

  • Wang Y, Zhu X K, Cheng Y B. 2015. Fe isotope behaviours during sulfide-dominated skarn-type mineralisation. J Asian Earth Sci, 103: 374–392

    Google Scholar 

  • Wang Y, Zhu X K, Mao J W, Li Z H, Cheng Y B. 2011. Iron isotope fractionation during skarn-type metallogeny: A case study of Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze valley. Ore Geol Rev, 43: 194–202

    Google Scholar 

  • Weiss Z, Wiewiora A. 1986. Polytypism of micas. III. X-ray diffraction identification. Clays Clay Miner, 34: 53–68

    Google Scholar 

  • Xu Y K, Hu Y, Chen X Y, Huang T Y, Sletten R S, Zhu D, Teng F Z. 2019. Potassium isotopic compositions of international geological reference materials. Chem Geol, 513: 101–107

    Google Scholar 

  • Yao J M, Mathur R, Sun W D, Song W L, Chen H Y, Mutti L, Xiang X K, Luo X H. 2016. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field. Geochem Geophys Geosyst, 17: 1725–1739

    Google Scholar 

  • Zhu X, Huang C K, Rui Z Y, Zhou Y H, Zhu X J, Hu C S, Mei Z K. 1983. Dexing Porphyry Copper Deposit (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Zhu X K, O’Nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chem Geol, 163: 139–149

    Google Scholar 

Download references

Acknowledgements

Brian Beard helped in mass spectrometry for K isotope analysis. This manuscript benefited from constructive comments from two anonymous reviewers, as well as editorial handling by Prof. Fangzhen Teng. This study was supported by the National Key R & D Program of China (Grant No. 2018YFC0604106) and the National Natural Science Foundation of China (Grant Nos. 41622301, 41873004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiang Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhao, S., Wang, X. et al. Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes. Sci. China Earth Sci. 63, 108–120 (2020). https://doi.org/10.1007/s11430-018-9387-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9387-2

Navigation