Skip to main content
Log in

Inertia gravity wave activity in the troposphere and lower stratosphere observed by Wuhan MST radar

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The troposphere and lower stratosphere (TLS) is a region with active atmospheric fluctuations. The Wuhan Mesosphere-Stratosphere-Troposphere (MST) radar is the first MST radar to have become operational in Mainland China. It is dedicated to real-time atmospheric observations. In this paper, two case studies about inertia gravity waves (IGWs) derived from three-dimensional wind field data collected with the Wuhan MST radar are presented. The intrinsic frequencies, vertical wavelengths, horizontal wavelengths, vertical wavenumber spectra, and energy density are calculated and analyzed. In this paper, we also report on multiple waves existing in the lower stratosphere observed by the Wuhan MST radar. Lomb-Scargle spectral analysis and the hodograph method were used to derive the vertical wavenumber and propagation direction. Meanwhile, an identical IGW is observed by Wuhan MST radar both in troposphere and lower stratosphere regions. Combining the observations, the source of the latter IGW detected in the TLS would be the jet streams located in the tropopause region, which also produced wind shear above and below the tropopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chan W P. 2012. An observational study of gravity waves associated with a shallow easterly airstream at Hong Kong international airport using remote-sensing meteorological instruments. Weather, 67: 316–323

    Article  Google Scholar 

  • Chen C, Chu X, Mcdonald A J, Vadas S L, Yu Z, Fong W, Lu X. 2013. Inertia-gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E). J Geophys Res, 118: 2794–2808

    Google Scholar 

  • Das S S, Uma K N, Das S K. 2012. MST radar observations of short-period gravity wave during overhead tropical cyclone. Radio Sci, 47: 531–535

    Article  Google Scholar 

  • Eckermann S D. 1995. Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves. J Geophys Res, 100: 14097–14112

    Article  Google Scholar 

  • Eckermann S D. 1996. Hodographic analysis of gravity waves: Relationships among Stokes’ parameters, rotary spectra and crossspectral methods. J Geophys Res, 101: 19169–19174

    Article  Google Scholar 

  • Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 41: 283–299

    Article  Google Scholar 

  • Geller M A, Alexander M J, Love P T, Bacmeister J, Ern M, Hertzog A, Manzini E, Preusse P, Sato K, Scaife A A, Zhou T. 2013. A comparison between gravity wave momentum fluxes in observations and climate models. J Clim, 26: 6383–6405

    Article  Google Scholar 

  • Guharay A, Sekar R. 2011. Seasonal characteristics of gravity waves in the middle atmosphere over Gadanki using Rayleigh lidar observations. J Atmos Sol-Terr Phys, 73: 1762–1770

    Article  Google Scholar 

  • Hans G M, Elsayed R T, Brian C W. 2013. Global propagation of gravity waves generated with the whole atmosphere transfer function model. J Atmos Sol-Terr Phys, 104: 7–17

    Article  Google Scholar 

  • Hirota I. 1984. Climatology of gravity waves in the middle atmosphere. J Atmos Sol-Terr Phys, 46: 767–773

    Article  Google Scholar 

  • Hirota I, Niki T. 1985. A statistical study of inertia-gravity waves in the middle atmosphere. J Meteorol Soc Jpn, 63: 1055–1065

    Google Scholar 

  • Hu X, Liu A Z, Gardner C S, Swenson G R. 2002. Characteristics of quasi-monochromatic gravity waves observed with Na lidar in the mesopause region at Starfire Optical Range, NM. Geophys Res Lett, 29: 22-1–4

    Google Scholar 

  • Larsen M F, Röttger J. 1987. Observation of thunderstorm reflectivities and doppler velocities measured at VHF and UHF. J Atmos Ocean Technol, 4: 151–159

    Article  Google Scholar 

  • Lin Y, Zhang F. 2008. Tracking gravity waves in baroclinic Jet-Front systems. J Atmos Sol-Terr Phys, 65: 2402–2415

    Article  Google Scholar 

  • Lu X, Liu A Z, Swenson G R, Li T, Leblanc T, Stuartrmid I. 2009. Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere. J Geophys Res, 114: 1840–1846

    Google Scholar 

  • Murphy D J, Alexander S P, Klekociuk A R, Love P T, Vincent R A. 2014. Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica. J Geophys Res, 119: 11–973

    Article  Google Scholar 

  • Muraoka Y, Kawahira K, Sato T, Tsuda T, Fukao S, Kato S. 1987. Characteristics of mesospheric internal gravity waves observed by MU Radar. Geophys Res Lett, 14: 1154–1157

    Article  Google Scholar 

  • Nastrom G D, Eaton F D. 2006. Quasi-monochromatic inertia-gravity waves in the lower stratosphere from Mst radar observations. J Geophys Res, 111: 4427–4459

    Google Scholar 

  • Occhipinti G, Coisson P, Makela J J, Allgeyer S, Kherani A, Hebert H, Lognonne P. 2011. Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere. Earth Planet Space, 63: 847–851

    Article  Google Scholar 

  • Onishchenko O, Pokhotelov O, Horton W, Smolyakov A, Kaladze T, Fedun V. 2014. Rolls of the internal gravity waves in the Earth’s atmosphere. Ann Geophys, 32: 181–186

    Article  Google Scholar 

  • Placke M, Hoffmann P, Latteck R, Rapp M. 2014. Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region. J Geophys Res, 120: 736–750

    Article  Google Scholar 

  • Plougonven R, Zhang F. 2014. Internal gravity waves from atmospheric jets and fronts. Rev Geophys, 52: 33–76

    Article  Google Scholar 

  • Pfenninger M, Liu A Z, Papen G C, Gardner C S. 1999. Gravity wave characteristics in the lower atmosphere at south pole. J Geophys Res, 104: 5963–5984

    Article  Google Scholar 

  • Pulido M, Caranti G. 2000. Power spectrum of a gravity wave propagating in a shearing background wind. Geophys Res Lett, 27: 101–104

    Article  Google Scholar 

  • Qing H Y, Zhou C, Zhao Z Y, Chen G, Ni B B, Gu X D, Yang G B, Zhang Y N. 2014a. A statistical study of inertia gravity waves in the troposphere based on the measurements of Wuhan Atmosphere Radio Exploration (WARE) radar. J Geophys Res, 119: 3701–3714

    Google Scholar 

  • Qing H Y, Zhang Y N, Zhou C, Zhao Z Y, Chen G. 2014b. Atmospheric temperature profiles estimated by the vertical wind speed observed by MST radar (in Chinese). Acta Phys Sin, 63: 094301–972

    Google Scholar 

  • Réchou A, Kirkwood S, Arnault J, Dalin P. 2014. Short vertical-wavelength inertia-gravity waves generated by a jet-front system at Arctic latitudes-VHF radar, Radiosondes and numerical modelling. Atmos Chem Phys, 14: 6785–6799

    Article  Google Scholar 

  • Revathy K, Nayar S R P, Murthy B V K. 1996. Deduction of temperature profile from MST radar observation of vertical wind. Geophys Res Lett, 23: 285–288

    Article  Google Scholar 

  • Sarma T V C, Kodama Y M, Tsuda T. 2011. Characteristics of atmospheric waves in the upper troposphere observed with the Gadanki MST Radar-RASS. J Atmos Sol-Terr Phys, 73: 1020–1030

    Article  Google Scholar 

  • Snyder C, Plougonven R, Muraki D. 2009. Mechanisms for spontaneous gravity-wave generation within a dipole vortex. J Atmos Sci, 66: 3464–3478

    Article  Google Scholar 

  • Swales D J, Young G S, Sikora T D, Winstead N S, Shirer H N. 2012. Synthetic aperture radar remote sensing of shear-driven atmospheric internal gravity waves in the vicinity of a warm front. Mon Weather Rev, 140: 1872–1882

    Article  Google Scholar 

  • Stober G, Sommer S, Rapp M, Latteck R. 2013. Investigation of gravity waves using horizontally resolved radial velocity measurements. Atmos Meas Tech, 6: 5795–5833

    Article  Google Scholar 

  • Thurairajah B, Bailey S M, Cullens C Y, Hervig M E,Russell J M. 2014. Gravity wave activity during recent stratospheric sudden warming events from SOFIE temperature measurements. J Geophys Res, 119: 8091–8103

    Google Scholar 

  • Tsuda T, Kato S, Yokoi T, Inoue T, Yamamoto M, VanZandt T E, Fukao S, Sato T. 1990. Gravity waves in the mesosphere observed with the middle and upper atmosphere radar. Radio Sci, 25: 1005–1018

    Article  Google Scholar 

  • Uccellini L W, Koch S E. 1987. The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon Weather Rev, 115: 721–729

    Article  Google Scholar 

  • Vadas S L, Nicolls M J. 2012. The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory. J Geophys Res, 117: 471–485

    Google Scholar 

  • Vaughan G, Worthington R M. 2007. Inertia-gravity waves observed by the UK MST radar. Q J R Meteorol Soc, 133: 179–188

    Article  Google Scholar 

  • Wang S, Zhang F. 2007. Sensitivity of mesoscale gravity waves to the baroclinicity of Jet-Front systems. Mon Weather Rev, 135: 670–688

    Article  Google Scholar 

  • Wang S, Zhang F. 2010. Source of gravity waves within a Vortex-Dipole Jet revealed by a linear model. J Atmos Sci, 67: 1438–1455

    Article  Google Scholar 

  • Wang S, Zhang F, Snyder C. 2009. Generation and propagation of inertia-gravity waves from vortex dipoles and jets. J Atmos Sci, 66: 1294–1314

    Article  Google Scholar 

  • Wang L, Geller M A. 2003. Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J Geophys Res, 108: 1211–1222

    Google Scholar 

  • Wang L, Geller M A, Alexander M J. 2005. Spatial and temporal variations of gravity wave parameters. part i: Intrinsic frequency, wavelength, and vertical propagation direction. J Atmos Sci, 62: 125–142

    Article  Google Scholar 

  • Wilms H, Rapp M, Hoffmann P, Fiedler J, Baumgarten G. 2013. Gravity wave influence on NLC: experimental results from ALOMAR, 69°N. Atmos Chem Phys, 13: 11951–11963

    Article  Google Scholar 

  • Wu D L, Waters J W. 1996. Satellite observations of atmospheric variances: A possible indication of gravity waves. Geophys Res Lett, 23: 3631–3634

    Article  Google Scholar 

  • Yang W M. 1998. Gravity wave studies of the mesopause region using a Na wind/temperature Lidar. Doctoral Dissertation. Chicago: University of Illinois

    Google Scholar 

  • Zhang F. 2004. Generation of mesoscale gravity waves in the upper-tropospheric jet-front systems. J Atmos Sci, 61: 440–457

    Article  Google Scholar 

  • Zhang S D, Yi F. 2005. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E) China. Ann Geophys, 23: 665–673

    Article  Google Scholar 

  • Zhang S D, Huang C, Yi F. 2006. Radiosonde observations of vertical wave number spectra for gravity waves in the lower atmosphere over central china. Ann Geophys, 24: 3257–3265

    Article  Google Scholar 

  • Zhao Z, Zhou C, Qing H Y, Yang G, Zhang Y, Chen Gang, Hu Y. 2013. Wuhan Atmosphere Radio Exploration (WARE) radar: System design and online winds measurements. Radio Sci, 48: 326–333

    Article  Google Scholar 

  • Zülicke C, Peters D. 2006. Simulation of Inertia-Gravity Waves in a Pole ward-Breaking Rossby Wave. J Atmos Sci, 63: 3253–3276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, H., Zhou, C., Zhao, Z. et al. Inertia gravity wave activity in the troposphere and lower stratosphere observed by Wuhan MST radar. Sci. China Earth Sci. 59, 1066–1073 (2016). https://doi.org/10.1007/s11430-015-5253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5253-9

Keywords

Navigation