Skip to main content
Log in

Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Zhuxi ore deposit is a super-large scheelite (copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite (copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller δEu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO3 content is 0.2%. Compared to peripheral rocks, the δEu and total rare earth element (REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated εHf(t) values are all negative, and the majority range from -6 to -9. The T DM2 values are concentrated in the range of 1.50–1.88 Ga (peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multi-stage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as “copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chem Geol, 192: 59–79

    Article  Google Scholar 

  • Chen G H, Wan H Z, Shu L S, Zhang C, Kang C. 2012. An analysis on ore-controlling conditions and geological features of the Cu-W polymetallic ore deposit in the Zhuxi area of Jingdezhen, Jiangxi Province (in Chinese). Acta Petrol Sin, 28: 3901–3914

    Google Scholar 

  • Chen Y J, Pirajno F, Qi J P, Li J, Wang H H. 2006. Ore geology, fluid geochemistry and genesis of the Shanggong gold deposit, eastern Qinling Orogen, China. Resour Geol, 56: 99–116

    Article  Google Scholar 

  • Chen Y J, Chen H Y, Zaw K, Pirajno F, Zhang Z J. 2007a. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geol Rev, 31: 139–169

    Article  Google Scholar 

  • Chen Y J, Ni P, Fan H R, Pirajno F, Lai Y, Su W C, Zhang H. 2007b. Diagnostic fluid inclusions of different types hydrothermal gold deposits (in Chinese). Acta Petrol Sin, 23: 2085–2108

    Google Scholar 

  • Chen Y J, Zhai M G, Jiang S Y. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent (in Chinese). Acta Petrol Sin, 25: 2695–2726

    Google Scholar 

  • Compston W, Williams I S, Kirchvink J L. 1992. Zircon U-Pb ages for the Early Cambrian time scale. J Geol Sci London, 149: 171–184

    Article  Google Scholar 

  • Corfu F, Hanchar J M, Hoskin P W O. 2003. Atlas of zircon textures. Rev Mine Geochem, 53: 469–500

    Article  Google Scholar 

  • Deng P, Shu L S, Yang M G, Guo Y J, Yu X Q. 2003. Geological features and dynamic evolution of the Ganjiang fault in Jiangxi Province (in Chinese). Geol Rev, 49: 113–122

    Google Scholar 

  • Deng P, Shu L S. 2012. Study on the Geodynamics of the Mesozoic-Cenozoic Basin-range Evolution in the Eastern Nanling Belt and Their Uranium Metallization (in Chinese). Beijing: Geological Publishing House. 1–247

    Google Scholar 

  • Guo L Z, Shi Y S, Ma R S, Lu H F. 1985. Plate movement and crustal evolution of the Jiangnan Proterozoic mobile belt, Southeast China. Earth Sci J Ass Geol Collabor Japan, 39: 156–166

    Google Scholar 

  • Guo L Z, Shi Y S, Ma R S. 1980. The Geotectonic framework and crustal evolution of South China. In: Scientific Papers on Geology for International Exchange (1) (in Chinese). Beijing: Geological Publishing House. 109–116

    Google Scholar 

  • Guo L Z, Shi Y S, Ma R S. 1983. On the formation and evolution of the Mesozoic-Cenozoic active continental margin and island arc tectonics of the western Pacific ocean (in Chinese). Acta Geol Sin, 57: 11–20

    Google Scholar 

  • Guo L Z, Shi Y S, Lu H F, Ma R S. 1989. The pre-Devonian tectonic patterns and evolution of South China. J SE Asian Earth Sci, 3: 87–93

    Article  Google Scholar 

  • Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposit. Econ Geol, 93: 373–404

    Article  Google Scholar 

  • He X R, Chen G H, Liu J G, Zhang C. 2011. The polymetallic Cu-W ore guide of prospecting in the Zhuxi area of Jingdezhen, Jiangxi (in Chinese). China Tungsten Ind, 26: 9–14

    Google Scholar 

  • Hou Z Q, Yang Z M. 2009. Porphyry deposits in continental settings of China: Geological characteristics, magmatic-hydrothermal system and metallogenic model (in Chinese). Acta Geol Sin, 83: 1779–1817

    Article  Google Scholar 

  • Hou Z Q, Zhang H R, Pan X F, Yang Z M. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geol Rev, 39: 21–45

    Article  Google Scholar 

  • Hua R M, Chen P R, Zhang W L. 2003. The Mesozoic-Cenozoic mineralization system relevant with granitoids in China (in Chinese). Sci China Ser D: Earth Sci, 33: 335–343

    Google Scholar 

  • Hua R M, Zhang W L, Yao J M. 2006. The rock-forming and ore-forming differences of two types of granites in South China (in Chinese). Mineral Deposits, 25: 127–130

    Google Scholar 

  • Hua R M, Li G L, Zhang W L. 2010. Differences of large-scale mineralization between tungsten and algam and discussion on the genesis (in Chinese). Mineral Deposits, 29: 9–23

    Google Scholar 

  • Huang L C, Jiang S Y. 2013. Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province (in Chinese). Acta Geol Sin, 29: 4323–4335

    Google Scholar 

  • Hunan BGMR (Bureau of Geology, Mineral Resources of Hunan Province). 1987. Regional Geology of the Hunan Province (in Chinese). Beijing: Geology Publication House. 1–650

    Google Scholar 

  • Jiang S Y, Peng N J, Huang L C, Xu Y M, Zhan G L, Dan X H. 2015. Geological characteristics and oregenesis of the giant Tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province (in Chinese). Acta Petrol Sin, 31: 639–655

    Google Scholar 

  • Jiangxi BGMR (Bureau of Geology, Mineral Resources of Jiangxi Province). 1984. Regional Geology of the Jiangxi Province (in Chinese). Beijing: Geology Publication House. 1–921

    Google Scholar 

  • Johnson C A, Rye D M, Skinner B J. 1990. Petrology and stable isotope geochemistry of the metamorphosed zinc-iron-manganese deposit at Sterling Hill, New Jersey. Econ Geol, 85: 1133–1161

    Article  Google Scholar 

  • Keith J D, van Middelaar W T, Clark A H, Hodgson C J. 1989. Granitoid textures, compositions and volatile fugacities associated with the formation of tungsten-dominated skarn deposits. Rev Econ Geol, 4: 235–250

    Google Scholar 

  • Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib Mineral Petrol, 109: 139–150

    Article  Google Scholar 

  • Kwak T A P. 1987. W-Sn skarn deposits and related metamorphic skarns and granitoids. Econ Geol, 77: 50–59

    Google Scholar 

  • Li Y, Pan X F, Zhao M, Chen G H, Zhang T F, Liu Q, Zhang C. 2014. LA-ICP-MS zircon U-Pb age, geochemical feature and relations to the W-Cu mineralization of granitic porphyry in Zhuxi skarn deposit, Jingdezhen, Jiangxi (in Chinese). Geol Rev, 60: 693–708

    Google Scholar 

  • Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center

    Google Scholar 

  • Mao J W, Xie G Q, Li X F, Zhang C Q, Mei Y X. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China (in Chinese). Earth Sci Front, 11: 45–55

    Google Scholar 

  • McDonough W F, Sun S S, Ringwood A E, Jagoutz E, Hofmann A W. 1992. Potassium, rubidium and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmoch Acta, 56: 1001–1012

    Article  Google Scholar 

  • Meinert L D, Dipple G M, Nicolescu S. 2005. World skarn deposits. Econ Geol, 100: 299–336

    Google Scholar 

  • Meinert L D, Hefton K K, Mayes D, Tasiran I. 1997. Geology, zonation and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ Geol, 92: 509–526

    Article  Google Scholar 

  • Newberry R J, Einaudi M T. 1981. Tectonic and geochemical setting of tungsten skarn mineralization in the Cordillera. Arizona Geol Soc Digest, 14: 99–111

    Google Scholar 

  • Newberry R J. 1982. Tungsten-bearing skarns of the Sierra Nevada. I. The Pine Creek mine, California. Econ Geol, 77: 823–844

    Article  Google Scholar 

  • Pearce J A. 1996. Sources and settings of granitic rocks. Episodes, 19: 120–125

    Google Scholar 

  • Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol, 58: 63–81

    Article  Google Scholar 

  • Pei R F, Wang Y L, Wang H L. 2009. Ore-forming specialty of the tectono-magmatic zone in Nanling region and its emplacement dynamics for metallogenic series of W-Sn polymetallic deposits (in Chinese). Geol China, 36: 483–489

    Google Scholar 

  • Qiu P, Liu J G. 2013. Discovery of the Zhuxi scheelite deposit and its prospecting significance, Jingdezhen, Jiangxi province (in Chinese). Geol Rev, 59: 339–341

    Google Scholar 

  • Ren J S, Chen T Y, Niu B G, Liu Z G, Liu F R. 1990. The Tectonics and Mineralization of Continental Lithosphere in the East China and Adjacent Region (in Chinese). Beijing: Science Press. 1–205

    Google Scholar 

  • Ren J S, Niu B G, He Z J, Xie G L, Liu Z G. 1998. The geotectonic framework and its dynamic evolution of the eastern China, In: Ren J S, Yang W R, eds. The Lithospheric Texture and Tectonic-magmatic Evolution of the Eastern China (in Chinese). Beijing: Atomic Energy Publishing House. 1–12

    Google Scholar 

  • Ruan K, Wang X N, Wu Y, Yang C P, Guang W C, Pan J Y. 2013. Relationship between the structure and granite-tungsten mineralization of Dahutang ore field (in Chinese). China Tungsten Ind, 28: 1–5

    Google Scholar 

  • Shu L S. 2006. Predevonian Tectonic Evolution of South China: from Cathaysian Block to Caledonian Period Folded Orogenic Belt (in Chinese). Geol J China Univ, 12: 418–431

    Google Scholar 

  • Shu L S. 2012. An analysis of principal features of tectonic evolution in South China Block (in Chinese). Geol Bull China, 31: 1035–1053

    Google Scholar 

  • Shu L S, Shi Y S, Guo L Z, Charvet J, Sun Y. 1995. The Late Proterozoic Plate Tectonics and Collisional Kinematics in the Middle Part of the Jiangnan Belt (in Chinese). Nanjing: Nanjing University Publishing House. 1–174

    Google Scholar 

  • Shu L S, Charvet J. 1996. Kinematic and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone (Jiangnan region, South China). Tectonophysics, 267: 291–302

    Article  Google Scholar 

  • Shu L S, Lu H F, Charvet J, Faure M. 1997. Kinematic study of the northern marginal fault zone of Wuyishan, South China (in Chinese). Geol J China Univ, 3: 282–292

    Google Scholar 

  • Shu L S, Zhou X M. 2002. Late Mesozoic tectonism of Southeast China (in Chinese). Geol Rev, 48: 249–260

    Google Scholar 

  • Shu L S, Zhou X M, Deng P, Yu X Q, Wang B, Zhu F P. 2004. Geological features of Mesozoic-Cenozoic basins and their tectonic evolution in Southeast China (in Chinese). Geol Bull China, 23: 876–884

    Google Scholar 

  • Shu L S, Yu J H, Jia D, Wang B, Shen W Z, Zhang Y Q. 2008a. Early Paleozoic orogenic belt in the eastern segment of South China (in Chinese). Geol Bull China, 27: 1081–1093

    Google Scholar 

  • Shu L S, Faure M, Wang B, Zhou X M, Song B. 2008b. Late Paleozoic-Early Mesozoic Geological Features of South China: Response to the Indosinian Collision Event in Southeast Asia. Comptes Rendus Geosci, 340: 151–165

    Article  Google Scholar 

  • Shu L S, Wang Y, Sha J G. 2009a. Jurassic sedimentary features and tectonic settings of southeastern China. Sci China Ser D: Earth Sci, 52: 1969–1978

    Article  Google Scholar 

  • Shu L S, Zhou X M, Deng P, Yu X Q. 2009b. Mesozoic tectonic evolution of the southeast china block: New insights from basin analysis. J Asian Earth Sci, 34: 376–391

    Article  Google Scholar 

  • Shu L S, Jahn B M, Charvet J, Santosh M. 2014. Early Paleozoic depositional environment and intracontinental orogeny in the Cathaysia Block (South China): Implications from stratigraphic, structural, geochemical and geochronologic evidence. Amer J Sci, 314: 154–186

    Article  Google Scholar 

  • Shu L S, Wang B, Cawood P A, Santosh M, Xu Z Q. 2015. Early Paleozoic and early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics, Doi: 10.1002/2015TC003835

    Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc London Spec Publ, 42: 313–345

    Article  Google Scholar 

  • Titley S R, Beane R E. 1981. Porphyry copper deposits Part I. Geologic settings, petrology and tectogenesis. Economic Geoloy, 75: 214–269

    Google Scholar 

  • Walison M. 1989. Igneous Petrogenesis: A Globle Tectonic Approach. London: Unwin Hyman. 1–464

    Book  Google Scholar 

  • Wang D Z, Zhou X M. 2002. Genesis of Late Mesozoic Volcanic-intrusive Complex of Southeast China and Crustal Evolution (in Chinese). Beijing: Science Press. 1–295

    Google Scholar 

  • Wang D Z, Shu L S. 2012. Late Mesozoic basin and range tectonics and related igneous rock assemblages of Southeast China. Geosci Front, 3: 109–124

    Article  Google Scholar 

  • Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O’Reilly S Y, Xu X S, Liu X M, Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Res, 159: 117–131

    Article  Google Scholar 

  • Wu G G, Zhang D, Zang W S. 2003. Study of tectonic layering motion and layering mineralization in the Tongling metallogenic cluster. Sci China Ser D: Earth Sci, 46: 852–863

    Article  Google Scholar 

  • Xiang X K, Wang P, Sun D M, Zhong B. 2013. Isotopic geochemical characteristics of the Shimensi tungsten-polymetallic deposit in northern Jiangxi Province (in Chinese). Acta Geosci Sin, 34: 263–271

    Google Scholar 

  • Xu B, Guo L Z, Shi Y S. 1992. Proterozoic Terrane and Multiphase Collision Orogens in Anhui-Zhejiang-Jiangxi Area (in Chinese). Beijing: Geological Publishing House. 1–122

    Google Scholar 

  • Yang M G, Mei Y W, Zhou Z Y. 1998. Ore-forming Rule and Prospecting of the Luoxiao-Wuyi Uplift and Chenzhou-Shangro Depression (in Chinese). Beijing: Geological Publishing House. 1–312

    Google Scholar 

  • Yang Y F, Li N, Chen Y J. 2012. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: Implications for the nature of porphyry ore-fluid systems formed in continental collision regime. Ore Geol Rev, 46: 83–94

    Article  Google Scholar 

  • Yang Y, Chen Y J, Zhang J, Zhang C. 2013. Ore geology, fluid inclusions and four-stage hydrothermal mineralization of the Shangfanggou giant Mo-Fe deposit in Eastern Qinling, central China. Ore Geol Rev, 55: 146–161

    Article  Google Scholar 

  • Yao J L, Shu L S, Santosh M, Li J Y. 2012. Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constraining the assembly of Yangtze and Cathaysia Blocks in South China. J Asian Earth Sci, 74: 225–243

    Article  Google Scholar 

  • Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M, DiWu C. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol, 247:100–118

    Article  Google Scholar 

  • Zhai Y S, Lin X D. 1993. Tectonics of Ore Fields (in Chinese). Beijing: Geological Publishing House. 23–68

    Google Scholar 

  • Zhang J, Chen Y J, Pirajno F, Deng J, Chen H Y, Wang C M. 2013. Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, central China: Implication for ore genesis. Ore Geol Rev, 53: 343–356

    Article  Google Scholar 

  • Zhang Y, Shu L S, Chen X Y. 2011. Study of geochemistry, geochronology and petro-genesis of the Early Paleozoic granitic plutons in the central-southern Jiangxi Province. Sci China: Earth Sci, 54: 1492–1510

    Article  Google Scholar 

  • Zhao M, Pan X F, Li Y, Chen G H, Zhang C, Kang C, Wei J, Zhang T F, Liu Q. 2015. Mineralogical characteristics and geological significance of the Zhuxi Cu-W polymetallic ore deposit, Jiangxi Province (in Chinese). Geol Bull China, 34: 548–568

    Google Scholar 

  • Zhao Y M, Feng C Y, Li D X, Liu J N, Xiao Y, Yu M, Ma S C. 2013. Metallogenic setting and mineralization-alteration characteristics of major skarn Fe-polymetallic deposits in Qimantag area, western Qinghai Province (in Chinese). Geol Mineral Deposit, 31: 1–19

    Google Scholar 

  • Zhou X M. 2007. The Lithosphere Dynamical Evolution of Late Mesozoic Granites in Nanling Area (in Chinese). Beijing: Science Press. 1–580

    Google Scholar 

  • Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanicrocks in South China: A response to tectonicevolution. Episodes, 29: 26–33

    Google Scholar 

  • Zhu Y L, Li C Y, Lin Y H. 1981. The Geology of Southern Jiangxi Tungsten Ore Field (in Chinese). Nanchang: Jiangxi People Publishing House. 1–440

    Google Scholar 

  • Zuo Q S. 2006. Analysis of geological settings of tungsten Mineralization for the Liyangdou ore deposit of Dahutang area in the western Jiuling Mts. (Jiangxi Province) and evaluation on further exploration and forecast (in Chinese). Resou Environ Eng, 20: 348–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiangShu Shu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Shu, L., Shu, L. et al. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Sci. China Earth Sci. 59, 803–823 (2016). https://doi.org/10.1007/s11430-015-5200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5200-9

Keywords

Navigation