Skip to main content
Log in

Investigation of the controlled factors influencing carbon isotope composition of foxtail and common millet on the Chinese Loess Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

To apply carbon isotope composition (δ 13C) analyses of C4 plants to the quantitative reconstruction of paleoclimate, the functional mechanism linking plant δ 13C (δ 13Cp) to the environment, which is based on the plants’ physiological characteristics and morphological adaptability, must be thoroughly understood. Foxtail millet (Setaria italic) and common millet (Panicum miliaceum), as C4 plants, are representative crops of the rain-fed agriculture present in northern China. Fossil millets are ideal for paleoclimatic studies because of the ease of acquisition and identification to the species level. Modern seeds of foxtail and common millet collected from different habitats of the Chinese Loess Plateau, and their carbon isotope compositions, were analyzed and correlated with environmental factors, such as latitude, altitude, temperature, precipitation, water availability, and relative humidity. The results showed that the δ 13C of foxtail millet had a significantly negative correlation with latitude (R=-0.46), which may indicate the influence of light. The effect of light on the δ 13C of foxtail millet accounted for only 21% of variability, while other climatic factors did not exert significant influences. Thus, the δ 13C of foxtail millet was not suitable for extracting climatic information. The δ 13C of common millet was significantly and positively correlated with precipitation during the growing period (R=0.75), explaining 56% of variability. The functional mechanisms analyzed, using the plants’ physiological characteristics and morphological adaptability, indicated that common millet can adapt to environmental changes because of stomatal sensitivity and some non-stomatal factors. Therefore, the δ 13C of common millet can record precipitation during growth and is a promising factor for paleoclimatic reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhani H, Trimborn P, Ziegler H. 1997. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst Evol, 206: 187–221

    Article  Google Scholar 

  • An Z M. 1988. Prehistoric agriculture in China (in Chinese). Acta Archaeol Sin, 4: 369–381

    Google Scholar 

  • Anderson W T, Bernasconi S M, McKenzie J A, Saurer M. 1998. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): An example from central Switzerland (1913–1995). J Geophys Res: Atmospheres (1984–2012), 103: 31625–31636

    Article  Google Scholar 

  • Araus J L, Buxó R. 1993. Changes in carbon isotope discrimination in grain cereals from the North-Western Mediterranean Basin during the past seven millennia. Aust J Plant Physiol, 20: 117–128

    Article  Google Scholar 

  • Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res, 112: 119–123

    Article  Google Scholar 

  • Bowman W D, Hubick K T, von Caemmerer S, Farquhar G D. 1989. Short-term changes in leaf carbon isotope discrimination in salt- and water-stressed C4 grasses. Plant Physiol, 90: 162–166

    Article  Google Scholar 

  • Brueck H. 2008. Effects of nitrogen supply on water-use efficiency of higher plants. J Plant Nutr Soil Sci, 171: 210

    Article  Google Scholar 

  • Buchmann N, Brooks J R, Rapp K D, Ehleringer J R. 2006. Carbon isotope composition of C4 grasses is influenced by light and water supply. Plant Cell Environ, 19: 392–402

    Article  Google Scholar 

  • von Caemmerer S, Furbank R T. 1999. The modelling of C4 photosynthesis. In: Sage R F, Monson R K, eds. C4 Plant Biology. San Diego: Academic Press. 173–211

    Chapter  Google Scholar 

  • Carmo-Silva A E, Powers S J, Keys A J, Arraba C A, Maria C, Parry M A J. 2008. Photorespiration in C4 grasses remains slow under drought conditions. Plant Cell Environ, 31: 925–940

    Article  Google Scholar 

  • Cerling T E, Wang Y, Quade J. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361: 344–345

    Article  Google Scholar 

  • Cerling T E, Harris J M, MacFadden B J, Leakey M G, Quade J, Eisenmann V, Ehleringer J R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature, 389: 153–158

    Article  Google Scholar 

  • Cerling T E, Ehleringer J R, Harris J M. 1998. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philos Trans R Soc B-Biol Sci, 353: 159–171

    Article  Google Scholar 

  • Cernusak L A, Ubierna N, Winter K, Holtum J A, Marshall J D, Farquhar G D. 2013. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol, 200: 1–16

    Article  Google Scholar 

  • Chai Y. 1999. Broomcorn Millet (in Chinese). Beijing: Chinese Agriculture Press

    Google Scholar 

  • Chen S P, Bai Y F, Zhang L X, Han X G. 2005. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ Exp Bot, 53: 65

    Article  Google Scholar 

  • Ciais P, Tans P P, Trolier M, White J W C, Francey R J. 1995. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269: 1098–1120

    Article  Google Scholar 

  • Comstock J P, Ehleringer J R. 1992. Correlating genetic variation in carbon isotopic composition with complex climatic gradients. Proc Natl Acad Sci USA, 89: 7747–7751

    Article  Google Scholar 

  • Crawford G W. 2006. East Asian Plant Domestication. In: Stark M T, ed. Archaeol Asia. Oxford: Blackwell Publishing. 77–95

    Chapter  Google Scholar 

  • Dawson T E, Mambelli S, Plamboeck A H, Templer P H, Tu K P. 2002. Stable isotopes in plant ecology. Annu Rev Ecol Syst, 33: 507–559

    Article  Google Scholar 

  • DeLucia E H, Schlesinger W H, Billings W D. 1988. Water relations and the maintenance of Sierran conifers on hydrothermally altered rock. Ecology, 69: 303–311

    Article  Google Scholar 

  • Dengler N G, Nelson T. 1999. Leaf structure and development in C4 plants. In: Sage R F, Russell K M, eds. C4 Plant Biology. San Diego: Academy Press. 133–172

    Google Scholar 

  • DeNiro M J, Hastorf C A. 1985. Alteration of 15N/14N and 13C/12C ratios of plant matter during the initial stages of diagenesis: Studies utilizing archaeological specimens from Peru. Geochim Cosmochim Acta, 49: 97–115

    Article  Google Scholar 

  • Diefendorf A F, Mueller K E, Wing S L, Koch P L, Freeman K H. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci USA, 107: 5738–5743

    Article  Google Scholar 

  • Drake B G, Gonzàlez-Meler M A, Long S P. 1997. More efficient plants: A Consequence of Rising Atmospheric CO2? Annu Rev Plant Phys, 48: 609–639

    Article  Google Scholar 

  • Ehleringer J R, Mooney H A. 1983. Photosynthesis and productivity of desert and Mediterranean climate plants. Encycloped Plant Physiol, 12: 205–231

    Google Scholar 

  • Farquhar G D, Sharkey T D. 1982. Stomatal conductance and photosynthesis. Annu Rev Plant Phys, 33: 317–345

    Article  Google Scholar 

  • Farquhar G D. 1983. On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol, 10: 205–226

    Article  Google Scholar 

  • Farquhar G D, Richards R A. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol, 11: 539–552

    Article  Google Scholar 

  • Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys, 40: 503–537

    Article  Google Scholar 

  • Francey R J, Farquhar G D. 1982. An explanation of 13C/12C variations in tree rings. Nature, 297: 28–31

    Article  Google Scholar 

  • Ghannoum O, von Caemmerer S, Conroy J P. 2002. The effect of drought on plant water use efficiency of 9 NAD-ME and NADP-ME C4 grasses. Funct Plant Biol, 29: 1337–1348

    Article  Google Scholar 

  • Ghannoum O, Conroy J P, Driscoll S P, Paul M J, Foyer C H, Lawlor D W. 2003. Non-stomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses. New Phytol, 159: 835–844

    Google Scholar 

  • Ghannoum O. 2009. C4 photosynthesis and water stress. Ann Bot, 103: 635–644

    Article  Google Scholar 

  • Goodfriend G A. 1990. Rainfall in the Negev desert during the middle Holocene, based on 13C of organic matter in land snail shells. Quat Res, 34: 186–197

    Article  Google Scholar 

  • Gouveia A C, Freitas H. 2009. Modulation of leaf attributes and water use efficiency in Quercus suber along a rainfall gradient. Trees, 23: 267–275

    Article  Google Scholar 

  • Gu S L, Ma J P, Liu Z J, Du J E, Guo Z L. 2001. Study on water use and water-saving techniques in foxtail millet (in Chinese with English abstract). Agr Res Arid Area, 19: 40–47

    Google Scholar 

  • Gu Z Y, Liu Q, Xu B, Han J M, Yang S L, Ding Z L, Liu D S. 2003. Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau: Organic carbon isotope evidence from the last glacial-interglacial loess-soil sequences. Chin Sci Bull, 48: 1271–1276

    Article  Google Scholar 

  • Guehl J M, Fort C, Ferhi A. 1995. Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytol, 131: 149–157

    Article  Google Scholar 

  • Guo G, Xie G. 2006. The relationship between plant stable carbon isotope composition, precipitation and satellite data, Tibet Plateau, China. Quat Int, 144: 68–71

    Article  Google Scholar 

  • Hadley N F, Szarek S R. 1981. Productivity of desert ecosystems. Bioscience, 31: 747–753

    Article  Google Scholar 

  • Hatch M D. 1987. C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta, 895: 81–106

    Article  Google Scholar 

  • Hatch M D. 1999. C4 photosynthesis: A historical overview. In: Sage R F, Russell K M, eds. C4 Plant Biology. San Diego: Academy Press. 17–46

    Chapter  Google Scholar 

  • Hattersley P W. 1982. δ 13C values of C4 types in grasses. Aust J Plant Physiol, 9: 139–154

    Article  Google Scholar 

  • Hattersley P W. 1983. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia, 57: 113–128

    Article  Google Scholar 

  • Hattersley P W, Watson L. 1992. Diversification of photosynthesis. In: Chapman G P, ed. Grass Evolution and Domestication. London: Cambridge University Press. 38–116

    Google Scholar 

  • Hatté C, Antoine P, Fontugne M, Lang A, Rousseau D D, Zoller L. 2001. δ 13C of loess organic matter as a potential proxy for paleoprecipitation. Quat Res, 55: 33–38

    Article  Google Scholar 

  • Henderson S A, von Caemmerer S, Farquhar G D. 1992. Short-term measurements of carbon isotope discrimination in several C4 species. Aust J Plant Physiol, 19: 263–285

    Article  Google Scholar 

  • Hubick K T, Farquhar G D. 1987. Carbon isotope discrimination-selecting for water-use efficiency. Aust Cotton Grower, 8: 66–68

    Google Scholar 

  • Hubick K T, Hammer G L, Farquhar G D, Wade L J, von Caemmerer S, Henderson S A. 1990. Carbon isotope discrimination varies genetically in C4 species. Plant Physiol, 92: 534–537

    Article  Google Scholar 

  • IPCC. 2007. Technical Summary. In: Solomon S, Qin D, Manning M, Alley R B, Berntsen T, Bindoff N L, Chen Z, Chidthaisong A, Gregory J M, Hegerl G C, Heimann M, Hewitson B, Hoskins B J, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker T F, Whetton P, Wood R A, Wratt D, eds. Climate change 2007 The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Kalapos T, van den Boogaard R, Lambers H. 1996. Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil, 185: 137–149

    Article  Google Scholar 

  • Kohn M J. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA, 107: 19691–19695

    Article  Google Scholar 

  • Körner C H, Diemer M. 1987. In situ Photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol, 1: 179–194

    Article  Google Scholar 

  • Körner C H, Larcher W. 1988. Plant life in cold climates. In: Long S P, Woodward F I, eds. Plants and Temperature. Sym Soc Exp Biol, 42: 25–57

    Google Scholar 

  • Körner C, Farquhar G D, Roksandic Z. 1988. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia, 74: 623–632

    Article  Google Scholar 

  • Körner C, Newmayer M, Menendez-Reidl S P, Smeets Scheel A. 1989. Functional morphology of mountain plants. Flora, 182: 353–383

    Google Scholar 

  • Korol R L, Kirschbaum M U F, Farquhar G D, Jeffreys M. 1999. Effects of water status and soil fertility on the C-isotope signature in Pinus radiate. Tree Physiol, 19: 551–562

    Article  Google Scholar 

  • Leffler A J, Enquist B J. 2002. Carbon isotope composition of tree leaves from Guanacaste, Costa Rica: Comparison across tropical forests and tree life history. J Trop Ecol, 18: 151–159

    Article  Google Scholar 

  • Li J Z, Wang G A, Liu X Z, Han J M. 2009. Variations in carbon isotope ratios of C3 plants and distribution of C4 plants along an altitudinal transect on the eastern slope of Mount Gongga. Sci China Ser D-Earth Sci, 52: 1714–1723

    Article  Google Scholar 

  • Li X Q. 2013. New progress in the Holocene climate and agriculture research in China. Sci China Earth Sci, 56: 2027–2036

    Article  Google Scholar 

  • Liang Z S, Kang S Z. 1996. Water use efficiency and improvement way (in Chinese with English abstract). Acta Bot Boreal-Occidental Sin, 16: 79–84

    Google Scholar 

  • Lin N F, Chai Y, Liao Q. 2002. Minor Grain Crops in China (in Chinese). Beijing: China Agriculture

    Google Scholar 

  • Liu C J, Kong Z C. 2004. Morphological comparison of foxtail millet and broomcorn millet and its significance in archaeological identification (in Chinese with English abstract). Archaeol, 8: 76–83

    Google Scholar 

  • Liu W G, Ning Y F, An Z S, Lu H Y, Cao Y N, Wu Z H. 2002. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau. Sci China Ser D-Earth Sci, 48: 93–99

    Article  Google Scholar 

  • Liu W G, Ning Y F, An Z S, Wu Z H, Lu H Y, Cao Y N. 2005. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau. Sci China Ser D-Earth Sci, 48: 93–99

    Article  Google Scholar 

  • Liu W G, Feng X H, Ning Y F, Zhang Q L, Cao Y N, An Z S. 2005. δ 13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Glob Change Biol, 11: 1094–1100

    Article  Google Scholar 

  • Livingston N J, Guy R D, Sun Z J, Ethier G J. 1999. The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca (Moench) Voss) seedlings. Plant Cell Environ, 22: 281

    Article  Google Scholar 

  • Lu T L D. 1998. Some botanical characteristics of green foxtail (Setaria viridis) and harvesting experiments on the grass. Antiquity, 72: 902–907

    Google Scholar 

  • Lu H Y, Zhang J P, Liu K B, Wu N Q, Li Y M, Zhou K S, Ye M L, Zhang T Y, Zhang H J, Yang X Y, Shen L C, Xu D K, Li Q. 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 1000 years ago. Proc Natl Acad Sci USA, 18: 7367–7372

    Article  Google Scholar 

  • Ma J Y, Sun W, Liu X N, Chen F H. 2012. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in northern China. PLoS One, 7: e51894

    Article  Google Scholar 

  • Macfarlane C, Adams M A, White D A. 2004. Productivity, carbon isotope discrimination and leaf traits of trees of Eucalyptus globulus Labill in relation to water availability. Plant Cell Environ, 27: 1515–1524

    Article  Google Scholar 

  • Marino B D, McElroy M B, Salawitch R J, Spaulding W G. 1992. Glacial- to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature, 357: 461–466

    Article  Google Scholar 

  • Maroco J P, Pereira J S, Chaves M M. 2000. Growth, photosynthesis and water-use efficiency of two C4 Sahelian grasses subjected to water deficits. J Arid Environ, 45: 119–137

    Article  Google Scholar 

  • McCarroll D, Loader N J. 2004. Stable isotopes in tree rings. Quat Sci Rev, 23: 771–801

    Article  Google Scholar 

  • Mitchell A K, Hinckley T M. 1993. Effects of nitrogen concentration on photosynthesis and water use efficiency in Douglas-fir. Tree Physiol, 12: 403–410

    Article  Google Scholar 

  • Miller J M, Williams R J, Farquhar G D. 2001. Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia. Funct Ecol, 15: 222–232

    Article  Google Scholar 

  • Morecroft M D, Woodward F I. 1996. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ 13C of Alchemilla alpine. New Phytol, 134: 471–479

    Article  Google Scholar 

  • Murphy B P, Bowman D M J S. 2009. The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Funct Ecol, 23: 1040–1049

    Article  Google Scholar 

  • Ning Y F, Liu W G, An Z S. 2008. A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes. Paleogeogr Paleoclimatol Paleoecol, 270: 59–63

    Article  Google Scholar 

  • Orchard K A, Cernusak L A, Hutley L B. 2010. Photosynthesis and wateruse efficiency of seedlings from northern Australian monsoon forest, savanna, and swamp habitats grown in a common garden. Funct Plant Biol, 37: 1050–1060

    Article  Google Scholar 

  • Pyankov V I, Gunin P D, Tsoog S, Black C C. 2000. C4 plants in the vegetation of Mongolia: Their natural occurrence and geographical distribution in relation to climate. Oecologia, 123: 15–31

    Article  Google Scholar 

  • Roden J S, Bowling D R, McDowell N G, Bond B J, Ehleringer J R. 2005. Carbon and oxygen isotope ratios of tree ring cellulose along a precipitation transect in Oregon, United States. J Geophys Res, 110: G02003, dio: 10.1029/2005JG000033

    Google Scholar 

  • Saliendra N Z, Meinzer F C, Perry M, Thom M. 1996. Association between partitioning of carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, photosynthesis, and growth in sugarcane. J Exp Bot, 47: 907–914

    Article  Google Scholar 

  • Schulze E D, Ellis R, Schulze W, Trimborn P, Ziegler H. 1996. Diversity, metabolic types and δ 13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia, 106: 352–369

    Article  Google Scholar 

  • Schulze E D, Williams R J, Farquhar G D, Schulze W, Langridge J, Miller J M, Walker B H. 1998. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust J Plant Physiol, 25: 413–425

    Article  Google Scholar 

  • Sheriff D W, Nambiar E K S. 1991. Nitrogen Nutrition, Growth and Gas Exchange in Eucalyptus globulus Labill, SEEDLING. Aust J Plant Physiol, 18: 37–52

    Article  Google Scholar 

  • Smith S D, Osmond C B. 1987. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum. Oecologia, 72: 533–541

    Article  Google Scholar 

  • Smith S D, Nowak R S. 1990. Ecophysiology of plants in the intermountain lowlands. In: Osmond C B, Pitelka L F, Hidy G M, eds. Plant Biology of the Basin and Range (Ecological Studies vol. 80). Berlin: Springer-Verlag. 179–241

    Chapter  Google Scholar 

  • Song M, Duan D Y, Chen H, Hu Q W, Zhang F, Xu X L, Tian Y Q, Hua O Y, Peng C H. 2008. Leaf δ 13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau. Ecography, 31: 499–508

    Article  Google Scholar 

  • Still C J, Berry J A, Collatz G J, DeFries R S. 2003. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Glob Biogeochem Cycl, 17: 1–14

    Article  Google Scholar 

  • Swap R J, Aranibar J N, Dowty P R, Gilhooly W P, Macko S A. 2004. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: Patterns and implications. Glob Change Biol, 10: 350–358

    Article  Google Scholar 

  • Tang Z C. 1983. On the study of drought ecophysiology in plants (in Chinese with English abstract). Acta Ecol Sinica, 3: 196–204

    Google Scholar 

  • Tieszen L L, Hein D, Qvortrup S A, Troughton J H, Imbamba S K. 1979. Use of δ 13C values to determine vegetation selectivity in East African herbivores. Oecologia, 37: 351–359

    Article  Google Scholar 

  • Thornthwaite C W. 1948. An approach toward a rational classification of climate. Geogr Rev, 38: 55–94

    Article  Google Scholar 

  • Ubierna N, Sun W, Cousins A B. 2011. The efficiency of C4 photosynthesis under low light conditions: Assumptions and calculations with CO2 isotope discrimination. J Exp Bot, 62: 3119–3134

    Article  Google Scholar 

  • Valentini R, Matteucci G, Dolman A J, Schulze E-D, Rebmann C, Moors E J, Granier A, Gross P, Jensen N O, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski A S, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis P G. 2000. Respiration as the main determinant of carbon balance in European forests. Nature, 404: 861–865

    Article  Google Scholar 

  • Wang G A, Han J M, Liu D S. 2003. The carbon isotope composition of C3 herbaceous plants in loess area of northern China. Sci China Ser D-Earth Sci, 46: 1069–1076

    Article  Google Scholar 

  • Wang G A, Han J M, Zhou L P, Xiong X G, Wu Z H. 2005. Carbon isotope ratios of plants and occurrences of C4 species under different soil moisture regimes in arid region of Northwest China. Physiol Plant, 125: 74–81

    Article  Google Scholar 

  • Wang G A, Han J M, Zhou L P, Xiong X G, Tan M, Wu Z H, Peng J. 2006. Carbon isotope ratios of C4 plants in loess areas of North China. Sci China Ser D-Earth Sci, 49: 97–102

    Article  Google Scholar 

  • Wang G A, Li J Z, Liu X Z, Li X Y. 2013b. Variation in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quat Sci Rev, 63: 83–90

    Article  Google Scholar 

  • Wang Y, Xu Y F, Khawaja S, Passey B H, Zhang C F, Wang X M, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P. 2013a. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett, 376: 43–53

    Article  Google Scholar 

  • Williams D G, Gemplo V, Fravolini A, Leavitt S W, Wall G W, Kimball B A, Pinter P J, LaMorte R, Ottman M. 2001. Carbon isotope discrimination by sorghum bicolor under CO2 enrichment and drought. New Phytol, 150: 285–293

    Article  Google Scholar 

  • West J B, Bowen G J, Cerling T E, Ehleringer J R. 2006. Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol, 21: 408–414

    Article  Google Scholar 

  • Yang Q, Li X Q, Liu W G, Zhou X Y, Zhao K L, Sun N. 2011. Carbon isotope fractionation during low temperature carbonization of foxtail and common millets. Org Geochem, 42: 713–719

    Article  Google Scholar 

  • Yao F Y, Wang G A, Liu X J, Song L. 2011. Assessment of effects of the rising atmospheric nitrogen deposition on nitrogen uptake and longterm water-use efficiency of plants using nitrogen and carbon stable isotopes. Rapid Commum Mass Sp, 25: 1827–1836

    Article  Google Scholar 

  • Yao X Y, Deng Z Y, Pu J Y, Yao X H, Ma X X, Zhu G Q, Guo J Y. 2004. A study on ecoclimate of prosomillet and its suitable planting regions in Gansu (in Chinese with English abstract). Arid Meteorol, 22: 52–56

    Google Scholar 

  • You X L. 1993. The question for origin and spread in both Foxtail millet and Common millet. Agr Hist China, 12: 1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoQiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Li, X. Investigation of the controlled factors influencing carbon isotope composition of foxtail and common millet on the Chinese Loess Plateau. Sci. China Earth Sci. 58, 2296–2308 (2015). https://doi.org/10.1007/s11430-015-5181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5181-8

Keywords

Navigation