Skip to main content
Log in

Numerical analysis of wave hazards in a harbor

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Resonance may occur when the periods of incoming waves are close to the eigen-periods of harbor basin. The amplified waves by resonance in harbor will induce serious wave hazards to harbor structures and vehicles in it. Through traditional theoretical approaches, the eigen-periods of harbor basin with regular shapes can be obtained. In our study, we proposed a numerical model to simulate the behavior characteristics of the harbor waves. A finite difference numerical model based on the shallow water equations (SWE) is developed to simulate incoming tsunami and tidal waves. By analyzing the time series data of water surface wave amplitude variations at selected synthetic observation locations, we estimate the wave height and arrival time in coastal area. Furthermore, we use frequency spectrum analysis to investigate the natural frequencies from the data recorded at the synthetic observation stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satake K. 28 Tsunamis. In: Lee W H K, Kanamori H, Jennings P C, et al, eds. International Geophysics. Academic Press, 2002. 437–451

  2. Fukao Y. Tsunami earthquakes and subduction processes near deep-sea trenches. J Geophys Res, 1979, 84: 2303–2314

    Article  Google Scholar 

  3. Kervella Y, Dutykh D, Dias F. Comparison between three-dimensional linear and nonlinear tsunami generation models. Theor Comput Fluid Dyn, 2007, 21: 245–269

    Article  Google Scholar 

  4. Lynett P, Liu P L F. A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res-Oceans, 2005, 110: C03006

    Article  Google Scholar 

  5. Saito T, Furumura T. Three-dimensional simulation of tsunami generation and propagation: Application to intraplate events. J Geophys Res, 2009, 114: B02307

    Article  Google Scholar 

  6. Greenslade D, Titov V. A comparison study of two numerical tsunami forecasting systems. Pure Appl Geophys, 2008, 165: 1991–2001

    Article  Google Scholar 

  7. Kirby J T, Dalrymple R A. An approximate model for nonlinear dispersion in monochromatic wave propagation models. Coastal Eng, 1986, 9: 545–561

    Article  Google Scholar 

  8. Titov V V, Gonzalez F I, Bernard E N, et al. Real-time tsunami forecasting: Challenges and solutions. Natural Hazards, 2005, 35: 41–58

    Article  Google Scholar 

  9. Cavaleri L, Alves J, Ardhuin F, et al. Wave modelling—The state of the art. Prog Oceanogr, 2007, 75: 603–674

    Article  Google Scholar 

  10. Escher J. Wave breaking and shock waves for a periodic shallow water equation. Philos Trans R Soc A-Math Phys Eng Sci, 2007, 365: 2281–2289

    Article  Google Scholar 

  11. Hamm L, Madsen P A, Peregrine D H. Wave transformation in the nearshore zone—A review. Coastal Eng, 1993, 21: 5–39

    Article  Google Scholar 

  12. Li B. Wave equations for regular and irregular water wave propagation. J Waterway Port Coastal Ocean Eng-Asce, 2008, 134: 121–142

    Article  Google Scholar 

  13. Huang H. A review of coastal wave modeling. Adv Mech, 2001, 31: 592–610

    Google Scholar 

  14. Group T W. The WAM Model. A third generation ocean wave prediction model. J Phys Oceanogr, 1988, 18: 1775–1810

    Article  Google Scholar 

  15. Komen G J, Cavaleri L, Donelan M, et al. Dynamic and Modelling of Ocean Waves. Cambridge: Cambridge University Press, 1994

    Book  Google Scholar 

  16. Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am, 1985, 75: 1135–1154

    Google Scholar 

  17. Koh H L, Teh S Y, Liu P L F, et al. Simulation of Andaman 2004 tsunami for assessing impact on Malaysia. J Asian Earth Sci, 2009, 36: 74–83

    Article  Google Scholar 

  18. Titov V V, Synolakis C E. Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophys Res Lett, 1997, 24: 1315

    Article  Google Scholar 

  19. Imamura F, Shuto N, Goto C. Numerical simulations of the transoceanic propagation of tsunamis. In: Proceedings of the Sixth Congress Asian and Pacific Regional Division, IAHR. Kyoto, Japan, 1988. 265–272

    Google Scholar 

  20. Liu P L F, Woo S B, Cho Y S. COMCOT User Manual Version 1.6. 2007

  21. Fujii Y, Satake K. Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am, 2007, 97: S192–S207

    Article  Google Scholar 

  22. Satake K. Inversion of Tsunami waveforms for the estimation of heterogeneous fault motion of large submarine earthquakes: The 1968 Tokachi-oki and 1983 Japan sea earthquakes. J Geophys Res, 1989, 94: 5627–5636

    Article  Google Scholar 

  23. Baba T, Cummins P R, Hori T, et al. High precision slip distribution of the 1944 Tonankai earthquake inferred from tsunami waveforms: Possible slip on a splay fault. Tectonophysics, 2006, 426: 119–134

    Article  Google Scholar 

  24. Geist E L, Titov V V, Arcas D, et al. Implications of the 26 December 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction-zone earthquakes. Bull Seismol Soc Am, 2007, 97: S249–S270

    Article  Google Scholar 

  25. McWilliams J C. Fundamentals of Geophysical Fluid Dynamics. Cambridge: Cambridge University Press, 2006

    Google Scholar 

  26. Yee H C, Warming R F, Harten A. Implicit total variation diminishing (TVD) schemes for steady-state calculations. J Comput Phys, 1985, 57: 327

    Article  Google Scholar 

  27. Brezina M, Falgout R, Maclachlan S, et al. Adaptive smoothed aggregation (SA). Philadelphia, PA, ETATS-UNIS. Soc Ind Appl Math, 200, 25: 1896–1920

  28. Adams M F. Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics. Number Linear Algebra Appl, 2004, 11: 141–153

    Article  Google Scholar 

  29. Wei Y, Mao X Z, Cheung K F. Well-balanced finite-volume model for long-wave runup. J Waterway Port Coastal Ocean Eng, 2006, 132: 114–124

    Article  Google Scholar 

  30. Piatanesi A, Lorito S. Rupture process of the 2004 Sumatra-Andaman earthquake from tsunami waveform inversion. Bull Seismol Soc Am, 2007, 97: S223–S231

    Article  Google Scholar 

  31. Liu Y, Santos A, Wang S M, et al. Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Planet In, 2007, 163: 233–244

    Article  Google Scholar 

  32. Palma E D, Matano R P. Dynamical impacts associated with radiation boundary conditions. J Sea Res, 2001, 46: 117–132

    Article  Google Scholar 

  33. Marchesiello P, McWilliams J C, Shchepetkin A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model, 2001, 3: 1–20

    Article  Google Scholar 

  34. Carter G S, Merrifield M A. Open boundary conditions for regional tidal simulations. Ocean Model, 2007, 18: 194–209

    Article  Google Scholar 

  35. Zhang H, Shi Y L, Yuen D A, et al. Modeling and visualization of tsunamis. Pure Appl Geophys, 2008, 165: 475–496

    Article  Google Scholar 

  36. Snieder R. A Guided Tour of Mathematical Methods. 2nd ed. Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  37. Stoneley R. The propagation of tsunamis. Geophys J R Astron Soc, 1964, 8: 64–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiMin Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, H., Zhang, H., Yuen, D.A. et al. Numerical analysis of wave hazards in a harbor. Sci. China Earth Sci. 55, 1554–1564 (2012). https://doi.org/10.1007/s11430-012-4388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4388-1

Keywords

Navigation