Skip to main content
Log in

Inkretinbasierte Diabetesmedikamente

Kardiovaskuläre Sicherheit bzw. kardiovaskulärer „Benefit“

Incretin-based diabetes drugs

Cardiovascular safety and “benefit”

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Hintergrund

Die amerikanische FDA („U.S. Food and Drug Administration“) fordert seit 2008 für neue Antidiabetika die Durchführung kardiovaskulärer Sicherheitsstudien. Kardiale Sicherheit ist demzufolge eine Conditio sine qua non. Dieser Forderung haben wir die großen kardiovaskulären Phase-4-Endpunktstudien („cardiovascular outcome trials“, CVOT) zu verdanken, die für die neueren Antidiabetika, DPP-4-Inhibitoren (DPP: Dipeptidylpeptidase), GLP-1-Agonisten (GLP: „glucagon-like peptide“) und auch SGLT-2-Inhibitoren (SGLT: „sodium dependent glucose transporter“) durchgeführt wurden und werden.

Ziele und Methode

Insbesondere die inkretinbasierten Therapiekonzepte wurden hinsichtlich ihrer kardiovaskulären Sicherheit geprüft und wesentliche Daten hierzu und zu ihrer Effizienz zusammengestellt. Die Analyse schließt bewusst nicht nur die kardiovaskulären Endpunkte mit ein, sondern widmet sich auch dem über die Einstellung des Blutzuckerspiegels hinausgehenden zusätzlichen Endorgannutzen.

Ergebnisse

Die bisher veröffentlichten RCT („randomized controlled trial“) zum Thema inkretinbasierte Therapie und kardiovaskuläre Sicherheit zeigen mindestens keine Unterlegenheit gegenüber der Standardtherapie (Gliptine und Lixisenatid), im Fall von Liraglutid und Semaglutid sogar eine Überlegenheit im kombinierten Endpunkt MACE („major adverse cardiovascular events“). Damit bestätigten sich die Ergebnisse vorhergehender präklinischer Untersuchungen bezüglich eines potenziellen positiven Effekts – zumindest für die derzeit verfügbare Substanz Liraglutid. Für die 1‑mal wöchentlich zu verabreichenden Präparate Exenatid QW, Dulaglutid und Albiglutid liegen erste Daten aus klinischen Studienprogrammen vor, die Präsentation der umfassenden Ergebnisse der CVOT wird für Herbst 2017 bzw. 2019 erwartet.

Abstract

Background

Since 2008, the conductance of cardiovascular safety studies regarding new antidiabetic substances is mandatory and is considered by the U.S. Food and Drug Administration (FDA) as conditio sine qua non. This requirement led to cardiovascular outcome trials (CVOTs), which are or will be available for newer glucose-lowering substances, comprising DPP-4 inhibitors (DPP: dipeptidyl peptidase), GLP-1 receptor agonists (GLP: glucagon-like peptide), and SGLT-2 inhibitors (SGLT: sodium-dependent glucose transporter).

Objective and methods

In particular, the incretin-based therapeutic concepts were tested for their cardiovascular safety, and essential data on this and their efficacy were compiled. The analysis deliberately includes not only cardiovascular aspects but also other pleiotropic effects beyond blood glucose adjustment.

Results

Published results from randomized controlled trials on the subject of incretin-based therapy and cardiovascular safety shows noninferiority to standard treatment (gliptins and lixisenatide) and in the case of liraglutide and semaglutide, superiority regarding the combined endpoint MACE (major adverse cardiovascular events) was confirmed. With this, preclinical studies showing beneficial effects on the cardiovascular and endothelial systems have been confirmed—at least for the currently available substance liraglutide. Preliminary results from clinical trials are available for the once-weekly formulations exenatide QW, dulaglutide, and albiglutide; however, detailed results from the CVOTs are awaited in autumn 2017 and in 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Amato A, Baldassano S, Liotta R et al (2014) Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle. J Endocrinol 221:29–37

    Article  CAS  PubMed  Google Scholar 

  2. Ban K, Noyan-Asraf M, Hoefer J et al (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350

    Article  CAS  PubMed  Google Scholar 

  3. Best J, Hoogwerf B, Herman WH et al (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 34:90–95

    Article  CAS  PubMed  Google Scholar 

  4. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M et al (2011) Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343:d4169

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bullock B, Heller R, Habener J (1996) Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968–2978

    Article  CAS  PubMed  Google Scholar 

  6. Candeias E, Sebastiao I, Cardoso S et al (2015) Gut-brain connection: the neuroprotective effects of the antidiabetic drug liraglutide. World J Diabetes 6:807–827

    Article  PubMed  PubMed Central  Google Scholar 

  7. Courreges J, Vilsboll T, Zdrakovic M et al (2008) Beneficial effects of once-daily liraglutide, a human glucagon-like peptide-1 analogue, on cardiovascular risk biomarkers in patients with type 2 diabetes. Diabet Med 25:1129–1131

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fava S (2014) Glucagon-like peptide 1 and the cardiovascular system. Curr Diabetes Rev 10:302–310

    Article  CAS  PubMed  Google Scholar 

  9. Golpon H, Puechner A, Welte T et al (2001) Vasorelaxant effect of glucagon-like peptide-(7-36)amide and amylin on the pulmonary circulation of the rat. Regul Pept 102:81–86

    Article  CAS  PubMed  Google Scholar 

  10. Green B, Hand K, Dougan J et al (2008) GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 478:136–142

    Article  CAS  PubMed  Google Scholar 

  11. Green J, Bethel M, Armstrong P et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242

    Article  CAS  PubMed  Google Scholar 

  12. Gros R, You X, Baggio L et al (2003) Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 144:2242–2252

    Article  CAS  PubMed  Google Scholar 

  13. Gupta N, Mellis J, Dunham R et al (2010) Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 51:1584–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holman R, Paul S, Bethel M et al (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    Article  CAS  PubMed  Google Scholar 

  15. Holmann RR, Bethel MA, Mentz RJ et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373. https://doi.org/10.1056/NEJMoa1612917

    Google Scholar 

  16. Jose T, Inzucchi S (2012) Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis Res 9:109–116

    Article  PubMed  Google Scholar 

  17. Lorber D (2014) Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 7:169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marso S, Daniels G, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marso S, Bain S, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844

    Article  CAS  PubMed  Google Scholar 

  20. Mannucci E, Monami M (2017) Cardiovascular safety of Incretin-based therapies in type 2 diabetes: systematic review of integrated analyses and randomized controlled trials. Adv Ther 34:1–40

    Article  CAS  PubMed  Google Scholar 

  21. Monami M, Dicembrini I, Nardini C et al (2014) Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 16:38–47

    Article  CAS  PubMed  Google Scholar 

  22. Neal B, Perkovic V, Mahaffey K et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. https://doi.org/10.1056/nejmoa1611925

    Google Scholar 

  23. Nikolaidis L, Elahi D, Hentosz T et al (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110:955–961

    Article  CAS  PubMed  Google Scholar 

  24. Nystrom T, Gutniak M, Zhang Q et al (2004) Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 287:E1209–1215

    Article  PubMed  Google Scholar 

  25. Pfeffer M, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257

    Article  CAS  PubMed  Google Scholar 

  26. Ravassa S, Zudaire A, Diez J (2012) GLP-1 and cardioprotection: from bench to bedside. Cardiovasc Res 94:316–323

    Article  CAS  PubMed  Google Scholar 

  27. Scirica B, Bhatt D, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326

    Article  CAS  PubMed  Google Scholar 

  28. Scirica B, Braunwald E, Raz I et al (2014) Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 130:1579–1588

    Article  CAS  PubMed  Google Scholar 

  29. Skyler J, Bergenstal R, Bonow R et al (2009) Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care 32:187–192

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vilsbøll T, Christensen M, Junker A et al (2012) Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344:d7771

    Article  PubMed  PubMed Central  Google Scholar 

  31. White W, Cannon C, Heller R et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335

    Article  CAS  PubMed  Google Scholar 

  32. Yu M, Moreno C, Hoagland K et al (2003) Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 21:1125–1135

    Article  CAS  PubMed  Google Scholar 

  33. Zinman B, Wanner C, Lachin J et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tschöpe.

Ethics declarations

Interessenkonflikt

Y.H. Lee-Barkey erhielt Vortragshonorare von AstraZeneca, BMS, Boehringer Ingelheim, Lilly, MSD und Sanofi sowie Kongressgebühren von Boehringer Ingelheim und Lilly. B. Stratmann und gibt an, dass kein Interessenkonflikt besteht. D. Tschöpe erhielt Beraterhonorare von Amgen, AstraZeneca, Boehringer Ingelheim, Novo Nordisk und Servier sowie Vortragshonorare, Kongressgebühren und Reisekosten von AstraZeneca, Boehringer Ingelheim, Lilly, MSD, Novo Nordisk, Sanofi und Servier. Als Honorarverantwortlicher erhielt er Gelder für klinische Studien von AstraZeneca, Bayer, Lilly, Novo Nordisk und Sanofi.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee-Barkey, Y.H., Stratmann, B. & Tschöpe, D. Inkretinbasierte Diabetesmedikamente. Diabetologe 13, 498–504 (2017). https://doi.org/10.1007/s11428-017-0269-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-017-0269-8

Schlüsselwörter

Keywords

Navigation