Skip to main content
Log in

C-Peptid

Neuer Therapieansatz bei mikrovaskulären Komplikationen des Typ-1-Diabetes?

C-peptide

Novel therapeutic approach to microvascular complications of type 1 diabetes?

  • CME Zertifizierte Fortbildung
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Zahlreiche Forschungsergebnisse zur Physiologie des C-Peptids wurden in den vergangenen 20 Jahren publiziert. Nachweislich bindet C-Peptid spezifisch an Zellmembranen und setzt die intrazelluläre Signaltransduktion über G-Protein- und Ca2+-abhängige Signalwege in Gang. Dies führt zur Aktivierung und gesteigerten Expression der endothelialen Stickstoffmonoxid-Synthase, der Na+/K+-ATPase und mehrerer Transkriptionsfaktoren, die für antiinflammatorische und zytoprotektive Mechanismen wichtig sind. Tiermodelle des Diabetes und frühe klinische Studien an Typ-1-Diabetikern zeigen, dass C-Peptid in Substitutionsdosis einen positiven Effekt auf frühe Stadien diabetesinduzierter funktioneller und struktureller Anomalien peripherer Nerven, des autonomen Nervensystems und der Nieren hat. Der Forschungsbedarf in Bezug auf C-Peptid und dessen Wirkmechanismus ist weiterhin groß. Dennoch zeichnen die verfügbaren Daten das Bild eines bioaktiven Peptids mit therapeutischem Potenzial.

Abstract

Much information on C-peptide physiology has been published during the past 20 years. It has been shown that C-peptide binds specifically to cell membranes and elicits intracellular signaling via G-protein and Ca2+-dependent pathways, resulting in activation and increased expression of endothelial nitric oxide synthase, Na+/K+-ATPase, and several transcription factors of importance for anti-inflammatory and cell protective mechanisms. Studies in animal models of diabetes and early clinical trials in patients with type 1 diabetes demonstrate that C-peptide in replacement doses has beneficial effects on early stages of diabetes-induced functional and structural abnormalities of the peripheral nerves, autonomic nervous system, and kidneys. Although there is still much to be learned about C-peptide and its mechanism of action, the available evidence presents the picture of a bioactive peptide with therapeutic potential.

The English full-text version of this article is available at SpringerLink (under “Supplemental”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Panero F, Novelli G, Zucco C et al (2009) Fasting plasma C-peptide and micro- and macrovascular complications in a large clinic-based cohort of type 1 diabetic patients. Diabetes Care 32:301–305

    Article  PubMed  CAS  Google Scholar 

  2. Wahren J, Kallas A, Sima AA (2012) The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes 61:761–772

    Article  PubMed  CAS  Google Scholar 

  3. Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci U S A 96:13318–13323

    Article  Google Scholar 

  4. Ohtomo Y, Aperia A, Sahlgren B et al (1996) C-peptide stimulates rat renal tubular Na+, K(+)-ATPase activity in synergism with neuropeptide Y. Diabetologia 39:199–205

    Article  PubMed  CAS  Google Scholar 

  5. Zhong Z, Kotova O, Davidescu A et al (2004) C-peptide stimulates Na+, K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci 61:2782–2790

    Article  PubMed  CAS  Google Scholar 

  6. Johansson BL, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type 1 (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158

    Article  PubMed  CAS  Google Scholar 

  7. Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 9:95–102

    Article  PubMed  CAS  Google Scholar 

  8. Al-Rasheed NM, Meakin F, Royal EL et al (2004) Potent activation of multiple signalling pathways by C-peptide in opossum kidney proximal tubular cells. Diabetologia 47:987–997

    Article  PubMed  CAS  Google Scholar 

  9. Kitamura T, Kimura K, Jung BD et al (2001) Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein. Biochem J 355(Pt 1):123–129

    Article  Google Scholar 

  10. Kitamura T, Kimura K, Makondo K et al (2003) Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 46:1698–1705

    Article  PubMed  CAS  Google Scholar 

  11. Zhong Z, Davidescu A, Ehren I et al (2005) C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. Diabetologia 48:187–197

    Article  PubMed  CAS  Google Scholar 

  12. Grunberger G, Qiang X, Li Z et al (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257

    Article  PubMed  CAS  Google Scholar 

  13. Scalia R, Coyle KM, Levine BJ et al (2000) C-peptide inhibits leukocyte-endothelium interaction in the microcirculation during acute endothelial dysfunction. FASEB J 14:2357–2364

    Article  Google Scholar 

  14. Galuska D, Pirkmajer S, Barres R (2011) C-Peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells. PLoS One 6:e28294

    Article  PubMed  CAS  Google Scholar 

  15. De La Tour DD, Raccah D, Jannot MF et al (1998) Erythrocyte Na/K ATPase activity and diabetes: relationship with C-peptide level. Diabetologia 41:1080–1084

    Article  Google Scholar 

  16. Forst T, De La Tour DD, Kunt T et al (2000) Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+-ATPase activity in diabetes mellitus type I. Clin Sci (Lond) 98:283–290

    Google Scholar 

  17. Fiorina P, Folli F, Zerbini G et al (2003) Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol 14:2150–2158

    Google Scholar 

  18. Sima AA, Zhang W, Sugimoto K et al (2001) C-peptide prevents and improves chronic type I diabetic polyneuropathy in the BB/Wor rat. Diabetologia 44:889–897

    Article  PubMed  CAS  Google Scholar 

  19. Cotter MA, Ekberg K, Wahren J, Cameron NE (2003) Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 52:1812–1817

    Article  PubMed  CAS  Google Scholar 

  20. Sima AA, Brismar T (1985) Reversible diabetic nerve dysfunction: structural correlates to electrophysiological abnormalities. Ann Neurol 18:21–29

    Article  PubMed  CAS  Google Scholar 

  21. Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566

    Article  PubMed  CAS  Google Scholar 

  22. Sima AA, Lattimer SA, Yagihashi S, Greene DA (1986) Axo-glial dysjunction. A novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneously diabetic bio-breeding rat. J Clin Invest 77:474–484

    Google Scholar 

  23. Dyck PJ, Lambert EH, O’Brien PC (1976) Pain in peripheral neuropathy related to rate and kind of fiber degeneration. Neurology 26:466–471

    Article  PubMed  CAS  Google Scholar 

  24. Kamiya H, Zhang W, Sima AA (2004) C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 56:827–835

    Article  PubMed  CAS  Google Scholar 

  25. Ekberg K, Brismar T, Johansson BL et al (2003) Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 52:536–541

    Article  PubMed  CAS  Google Scholar 

  26. Ekberg K, Brismar T, Johansson BL et al (2007) C-Peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care 30:71–76

    Article  PubMed  CAS  Google Scholar 

  27. Brown MJ, Bird SJ, Watling S et al (2004) Natural progression of diabetic peripheral neuropathy in the Zenarestat study population. Diabetes Care 27:1153–1159

    Article  PubMed  Google Scholar 

  28. Johansson BL, Borg K, Fernqvist-Forbes E et al (1996) C-peptide improves autonomic nerve function in IDDM patients. Diabetologia 39:687–695

    Article  PubMed  CAS  Google Scholar 

  29. Johansson BL, Borg K, Fernqvist-Forbes E et al (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med 17:181–189

    Article  PubMed  CAS  Google Scholar 

  30. Fioretto P, Steffes MW, Brown DM, Mauer SM (1992) An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am J Kidney Dis 20:549–558

    PubMed  CAS  Google Scholar 

  31. Sjöquist M, Huang W, Johansson BL (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764

    Article  PubMed  Google Scholar 

  32. Samnegård B, Jacobson SH, Jaremko G et al (2001) Effects of C-peptide on glomerular and renal size and renal function in diabetic rats. Kidney Int 60:1258–1265

    Article  PubMed  Google Scholar 

  33. Samnegård B, Jacobson SH, Jaremko G et al (2005) C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 20:532–538

    Article  PubMed  Google Scholar 

  34. Nordquist L, Brown R, Fasching A et al (2009) Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption. Am J Physiol Renal Physiol 297:F1265–F1272

    Article  PubMed  CAS  Google Scholar 

  35. Hills CE, Willars GB, Brunskill NJ (2010) Proinsulin C-peptide antagonizes the profibrotic effects of TGF-beta1 via up-regulation of retinoic acid and HGF-related signaling pathways. Mol Endocrinol 24:822–831

    Article  PubMed  CAS  Google Scholar 

  36. Maezawa Y, Yokote K, Sonezaki K et al (2006) Influence of C-peptide on early glomerular changes in diabetic mice. Diabetes Metab Res Rev 22:313–322

    Article  PubMed  CAS  Google Scholar 

  37. Al-Rasheed NM, Willars GB, Brunskill NJ (2006) C-peptide signals via Galpha i to protect against TNF-alpha-mediated apoptosis of opossum kidney proximal tubular cells. J Am Soc Nephrol 17:986–995

    Google Scholar 

  38. Johansson BL, Sjöberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia 35:121–128

    Article  PubMed  CAS  Google Scholar 

  39. Johansson BL, Kernell A, Sjöberg S, Wahren J (1993) Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab 77:976–981

    Google Scholar 

  40. Ekberg K, Johansson B-L, Wahren J (2001) Stimulation of blood flow by C-peptide in patients with type 1 diabetes. Diabetologia 44(Suppl 1):A323

    Google Scholar 

  41. Lindström K, Johansson C, Johnsson E, Haraldsson B (1996) Acute effects of C-peptide on the microvasculature of isolated perfused skeletal muscles and kidneys in rat. Acta Physiol Scand 156:19–25

    Article  PubMed  Google Scholar 

  42. Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest 101:2036–2041

    Google Scholar 

  43. Johansson BL, Sundell J, Ekberg K et al (2004) C-peptide improves adenosine-induced myocardial vasodilation in type 1 diabetes patients. Am J Physiol Endocrinol Metab 286:E14–E19

    Article  PubMed  CAS  Google Scholar 

  44. Hansen A, Johansson BL, Wahren J, Bibra H von (2002) C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 51:3077–3082

    Article  PubMed  CAS  Google Scholar 

  45. McMillan DE, Utterback NG, La Puma J (1978) Reduced erythrocyte deformability in diabetes. Diabetes 27:895–901

    PubMed  CAS  Google Scholar 

  46. Kunt T, Schneider S, Pfutzner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type I diabetes mellitus. Diabetologia 42:465–471

    Article  PubMed  CAS  Google Scholar 

  47. Luppi P, Kallas A, Wahren J (2013) Can C-peptide mediated anti-inflammatory effects retard the development of microvascular complications of type 1 diabetes? Diabetes Metab Res Rev (im Druck). DOI 10.1002/dmrr.2409

  48. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  PubMed  CAS  Google Scholar 

  49. Bhatt MP, Lim YC, Hwang J et al (2013) C-Peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes 62:243–253

    Article  PubMed  CAS  Google Scholar 

  50. Cifarelli V, Geng X, Styche A et al (2011) C-peptide reduces high glucose-induced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation. Diabetologia 54:2702–2712

    Article  PubMed  CAS  Google Scholar 

  51. Luppi P, Cifarelli V, Wahren J (2011) C-peptide and long-term complications of diabetes. Pediatr Diabetes 12:276–292

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seinen Koautor auf folgende Beziehung hin: J. Wahren und Å. Kallas sind Angestellte von Cebix AB, Stockholm, Schweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wahren.

Zusatzmaterial online

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahren, J., Kallas, Å. C-Peptid. Diabetologe 9, 319–332 (2013). https://doi.org/10.1007/s11428-013-1044-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-013-1044-0

Schlüsselwörter

Keywords

Navigation