Skip to main content
Log in

Structural insight into the dual-antagonistic mechanism of AB928 on adenosine A2 receptors

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The adenosine subfamily G protein-coupled receptors A2AR and A2BR have been identified as promising cancer immunotherapy candidates. One of the A2AR/A2BR dual antagonists, AB928, has progressed to a phase II clinical trial to treat rectal cancer. However, the precise mechanism underlying its dual-antagonistic properties remains elusive. Herein, we report crystal structures of the A2AR complexed with AB928 and a selective A2AR antagonist 2–118. The structures revealed a common binding mode on A2AR, wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets. In contrast, the cAMP assay and A2AR and A2BR molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A2BR. Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A2BR pocket, while 2–118 did not due to intrinsic differences. This disparity potentially accounted for the difference in inhibitory efficacy between A2BR and A2AR. This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A2AR/A2BR for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factors for the A2BR-AB928 and A2BR-2-118 structures have been deposited in the Protein Data Bank with identification codes 8JWZ and 8JWY, respectively.

References

  • Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J. J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystlogr D Biol Crystlogr 66, 213–221.

    Article  ADS  CAS  Google Scholar 

  • Beavis, P.A., Milenkovski, N., Henderson, M.A., John, L.B., Allard, B., Loi, S., Kershaw, M.H., Stagg, J., and Darcy, P.K. (2015). Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3, 506–517.

    Article  CAS  PubMed  Google Scholar 

  • Borea, P.A., Gessi, S., Merighi, S., Vincenzi, F., and Varani, K. (2018). Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98, 1591–1625.

    Article  CAS  PubMed  Google Scholar 

  • Borodovsky, A., Barbon, C.M., Wang, Y., Ye, M., Prickett, L., Chandra, D., Shaw, J., Deng, N., Sachsenmeier, K., Clarke, J.D., et al. (2020). Small molecule AZD4635 inhibitor of A2aR signaling rescues immune cell function including CD103+ dendritic cells enhancing anti-tumor immunity. J Immunother Cancer 8, e000417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Zhang, J., Weng, Y., Xu, Y., Lu, W., Liu, W., Liu, M., Hua, T., and Song, G. (2022). Cryo-EM structure of the human adenosine A2B receptor-Gs signaling complex. Sci Adv 8, eadd3709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappori, A.A., Creelan, B., Tanvetyanon, T., Gray, J.E., Haura, E.B., Thapa, R., Barlow, M.L., Chen, Z., Chen, D.T., Beg, A.A., et al. (2022). Phase I study of taminadenant (PBF509/NIR178), an adenosine 2A receptor antagonist, with or without spartalizumab (PDR001), in patients with advanced non-small cell lung cancer. Clin Cancer Res 28, 2313–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claff, T., Klapschinski, T.A., Tiruttani Subhramanyam, U.K., Vaaßen, V.J., Schlegel, J. G., Vielmuth, C., Voß, J.H., Labahn, J., and Müller, C.E. (2022). Single stabilizing point mutation enables high-resolution co-crystal structures of the adenosine A2A receptor with preladenant conjugates. Angew Chem Int Ed 61, e202115545.

    Article  ADS  CAS  Google Scholar 

  • Claff, T., Schlegel, J.G., Voss, J.H., Vaaßen, V.J., Weiße, R.H., Cheng, R.K.Y., Markovic-Mueller, S., Bucher, D., Sträter, N., and Müller, C.E. (2023). Crystal structure of adenosine A2A receptor in complex with clinical candidate etrumadenant reveals unprecedented antagonist interaction. Commun Chem 6, 106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, M., Zhou, Q., Xu, Y., Weng, Y., Yao, D., Zhao, S., and Song, G. (2022). Crystal structure of a constitutive active mutant of adenosine A2A receptor. IUCrJ 9, 333–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doré, A.S., Robertson, N., Errey, J.C., Ng, I., Hollenstein, K., Tehan, B., Hurrell, E., Bennett, K., Congreve, M., Magnani, F., et al. (2011). Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19, 1283–1293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dziedzic, K., Węgrzyn, P., Gałęzowski, M., Bońkowska, M., Grycuk, K., Satała, G., Wiatrowska, K., Wiklik, K., Brzózka, K., and Nowak, M. (2021). Release of adenosine-induced immunosuppression: comprehensive characterization of dual A2A/A2B receptor antagonist. Int Immunopharmacol 96, 107645.

    Article  CAS  PubMed  Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystlogr D Biol Crystlogr 66, 486–501.

    Article  ADS  CAS  Google Scholar 

  • Evans, J.V., Suman, S., Goruganthu, M.U.L., Tchekneva, E.E., Guan, S., Arasada, R.R., Antonucci, A., Piao, L., Ilgisonis, I., Bobko, A.A., et al. (2023). Improving combination therapies: targeting A2B-adenosine receptor to modulate metabolic tumor microenvironment and immunosuppression. J Natl Cancer Institute 115, 1404–1419.

    Article  Google Scholar 

  • Fredholm, B.B., Ap, I.J., Jacobson, K.A., Klotz, K.N., and Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53: 527–552.

    CAS  PubMed  Google Scholar 

  • He, J., Lin, X., Meng, F., Zhao, Y., Wang, W., Zhang, Y., Chai, X., Zhang, Y., Yu, W., Yang, J., et al. (2022). A novel small molecular prostaglandin receptor EP4 antagonist, L001, suppresses pancreatic cancer metastasis. Molecules 27, 1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer, F., Di Sario, G., Musiu, C., Sartoris, S., De Sanctis, F., and Ugel, S. (2021). A complex metabolic network confers immunosuppressive functions to myeloid-derived suppressor cells (MDSCS) within the tumour microenvironment. Cells 10, 2700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., and MacKerell Jr, A.D. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14, 71–73.

    Article  CAS  PubMed  Google Scholar 

  • Iacovelli, R., Ciccarese, C., Procopio, G., Astore, S., Cannella, M.A., Maratta, M.G., Rizzo, M., Verzoni, E., Porta, C., and Tortora, G. (2022). Current evidence for second-line treatment in metastatic renal cell carcinoma after progression to immune-based combinations. Cancer Treat Rev 105, 102379.

    Article  CAS  PubMed  Google Scholar 

  • Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y.T., Lane, J.R., IJzerman, A.P., and Stevens, R.C. (2008). The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch, W. (2010). XDS. Acta Crystlogr D Biol Crystlogr 66, 125–132.

    Article  ADS  CAS  Google Scholar 

  • Kumar, B.A., Kumari, P., Sona, C., and Yadav, P.N. (2017). GloSensor assay for discovery of GPCR-selective ligands. Methods Cell Biol 142: 27–50.

    Article  CAS  PubMed  Google Scholar 

  • Lim, E.A., Bendell, J.C., Falchook, G.S., Bauer, T.M., Drake, C.G., Choe, J.H., George, D. J., Karlix, J.L., Ulahannan, S., Sachsenmeier, K.F., et al. (2022). Phase Ia/b, open-label, multicenter study of AZD4635 (an adenosine A2A receptor antagonist) as monotherapy or combined with durvalumab, in patients with solid tumors. Clin Cancer Res 28, 4871–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Chun, E., Thompson, A.A., Chubukov, P., Xu, F., Katritch, V., Han, G.W., Roth, C.B., Heitman, L.H., IJzerman, A.P., et al. (2012). Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Acevedo, J.A., Dholaria, B., Soyano, A.E., Knutson, K.L., Chumsri, S., and Lou, Y. (2018). Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason, J.S., Bortolato, A., Weiss, D.R., Deflorian, F., Tehan, B., and Marshall, F.H. (2013). High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. In Silico Pharmacol 1, 23.

    Article  PubMed Central  Google Scholar 

  • McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystlogr 40, 658–674.

    Article  CAS  Google Scholar 

  • Pastore, D.R., Kumar, S., Schwartz, B., Mookhtiar, K., and Reddy, V. (2021). 257 Combination of adenosine antagonists A2AR (TT-10) and A2BR (TT-4) with checkpoint inhibitors demonstrate anti-tumor activity in CT-26 murine colon tumor allograft model. J Immunother Cancer 9, A279.

    Article  Google Scholar 

  • Saini, A., Patel, R., Gaba, S., Singh, G., Gupta, G.D., and Monga, V. (2022). Adenosine receptor antagonists: recent advances and therapeutic perspective. Eur J Med Chem 227, 113907.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, L., Jin, L., Leleti, M., Ashok, D., Jeffrey, J., Rieger, A., Tiessen, R.G., Arold, G., Tan, J.B.L., Powers, J.P., et al. (2019). Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Invest New Drugs 37, 711–721.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B., Bachhawat, P., Chu, M.L.H., Wood, M., Ceska, T., Sands, Z.A., Mercier, J., Lebon, F., Kobilka, T.S., and Kobilka, B.K. (2017). Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci USA 114, 2066–2071.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanommeslaeghe, K., and MacKerell Jr, A.D. (2012). Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52, 3144–3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters, M.J., Tan, J.B., Becker, A., Yi, F., Park, T., Leleti, M.R., Rosen, B., Sharif, E., Debien, L., Young, S., et al. (2017). Abstract 4,572: characterization of the potent and selective A2aR antagonist AB928 for the treatment of cancer. Cancer Res 77, 4572.

    Article  Google Scholar 

  • Wang, X., Jespers, W., Prieto-Díaz, R., Majellaro, M., IJzerman, A.P., van Westen, G.J. P., Sotelo, E., Heitman, L.H., and Gutiérrez-de-Terán, H. (2021). Identification of V6.51L as a selectivity hotspot in stereoselective A2B adenosine receptor antagonist recognition. Sci Rep 11, 14171.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, E.L., Cheng, X., Jo, S., Rui, H., Song, K.C., Dávila-Contreras, E.M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R.M., et al. (2014). CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita, K., Hirata, K., and Yamamoto, M. (2018). KAMO: towards automated data processing for microcrystals. Acta Crystlogr D Struct Biol 74, 441–449.

    Article  ADS  CAS  Google Scholar 

  • Yu, F., Zhu, C., Xie, Q., and Wang, Y. (2020). Adenosine A2A receptor antagonists for cancer immunotherapy. J Med Chem 63, 12196–12212.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., Li, H., Pu, W., Chen, L., Guo, D., Jiang, H., He, B., Qin, S., Wang, K., Li, N., et al. (2022). Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci 65, 236–279.

    Article  CAS  PubMed  Google Scholar 

  • Zaynagetdinov, R., Schiemann, K., Nallaparaju, K., Belousova, N., Matevossian, A., Chen, Z., Kradjian, G., Pandya, M., Dawra, N., Krauel, E.M., et al. (2022). Abstract 3,499: M1069 as dual A2A/A2B adenosine receptor antagonist counteracts immune-suppressive mechanisms of adenosine and reduces tumor growth in vivo. Cancer Res 82, 3499.

    Article  Google Scholar 

  • Zhang, N., Zhu, H., Li, Z., and Dong, E. (2022). A novel β2-AR agonist,higenamine, induces β-arrestin-biased signaling. Sci China Life Sci 65, 1357–1368.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhou, Q., Yang, D., Wu, M., Guo, Y., Guo, W., Zhong, L., Cai, X., Dai, A., Jang, W., Shakhnovich, E.I., et al. (2019). Common activation mechanism of class a GPCRs. eLife 8, e50279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, C., Ze, S., Zhou, R., Yang, X., Wang, H., Chai, X., Fang, M., Liu, M., Wang, Y., Lu, W., et al. (2023). Discovery of pyridinone derivatives as potent, selective, and orally bioavailable adenosine A2A receptor antagonists for cancer immunotherapy. J Med Chem 66, 4734–4754.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2018YFA0507001), the Basic Research Program of Science and Technology Commission of Shanghai Municipality (21JC1402400), the National Natural Science Foundation of China (32171215, 81972828, 82172644, 82273857 and 81830083), and the National Key Scientific Infrastructure for Translational Medicine (Shanghai) (TMSK-2021-120). We thank the Instruments Sharing Platform of the School of Life Sciences, East China Normal University. We also thank the support of ECNU Multifunctional Platform for Innovation (001) and the National Super Computing Center in Zhengzhou for providing computational resources for this study. The synchrotron radiation experiments were performed at the BL45XU of Spring-8, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiansen Zhang, Weiqiang Lu or Gaojie Song.

Ethics declarations

The author(s) declare that they have no conflict of interest

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Y., Yang, X., Zhang, Q. et al. Structural insight into the dual-antagonistic mechanism of AB928 on adenosine A2 receptors. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2459-8

Navigation