Skip to main content
Log in

Integrated neural tracing and in-situ barcoded sequencing reveals the logic of SCN efferent circuits in regulating circadian behaviors

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The circadian clock coordinates rhythms in numerous physiological processes to maintain organismal homeostasis. Since the suprachiasmatic nucleus (SCN) is widely accepted as the circadian pacemaker, it is critical to understand the neural mechanisms by which rhythmic information is transferred from the SCN to peripheral clocks. Here, we present the first comprehensive map of SCN efferent connections and suggest a molecular logic underlying these projections. The SCN projects broadly to most major regions of the brain, rather than solely to the hypothalamus and thalamus. The efferent projections from different subtypes of SCN neurons vary in distance and intensity, and blocking synaptic transmission of these circuits affects circadian rhythms in locomotion and feeding to different extents. We also developed a barcoding system to integrate retrograde tracing with in-situ sequencing, allowing us to link circuit anatomy and spatial patterns of gene expression. Analyses using this system revealed that brain regions functioning downstream of the SCN receive input from multiple neuropeptidergic cell types within the SCN, and that individual SCN neurons generally project to a single downstream brain region. This map of SCN efferent connections provides a critical foundation for future investigations into the neural circuits underlying SCN-mediated rhythms in physiology. Further, our new barcoded tracing method provides a tool for revealing the molecular logic of neuronal circuits within heterogeneous brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, E.E., and Moore, R.Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916, 172–191.

    Article  CAS  PubMed  Google Scholar 

  • Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J., and Herzog, E.D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8, 476–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., et al. (2017). QuPath: open source software for digital pathology image analysis. Sci Rep 7, 16878.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Campos, L.M.G., Cruz-Rizzolo, R.J., Watanabe, I.S., Pinato, L., and Nogueira, M.I. (2014). Efferent projections of the suprachiasmatic nucleus based on the distribution of vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) immunoreactive fibers in the hypothalamus of Sapajus apella. J Chem Neuroanat 57–58, 42–53.

    Article  PubMed  Google Scholar 

  • Chen, J., Wang, Z., Li, Z., Peng, D., and Fang, Y. (2021). Disturbances of affective cognition in mood disorders. Sci China Life Sci 64, 938–941.

    Article  PubMed  Google Scholar 

  • Chen, X., Sun, Y.C., Zhan, H., Kebschull, J.M., Fischer, S., Matho, K., Huang, Z.J., Gillis, J., and Zador, A.M. (2019). High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, J.A., Leise, T.L., Castanon-Cervantes, O., and Davidson, A.J. (2011). Intrinsic regulation of spatiotemporal organization within the suprachiasmatic nucleus. PLoS ONE 6, e15869.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, J.A., Suen, T.C., Callif, B.L., Mitchell, A.S., Castanon-Cervantes, O., Baker, K. M., Kloehn, I., Baba, K., Teubner, B.J.W., Ehlen, J.C., et al. (2015). Shell neurons of the master circadian clock coordinate the phase of tissue clocks throughout the brain and body. BMC Biol 13, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang, F., and Hu, H. (2021). Recent progress on mechanisms of human cognition and brain disorders. Sci China Life Sci 64, 843–846.

    Article  PubMed  Google Scholar 

  • Freeman, J.G.M., Krock, R.M., Aton, S.J., Thaben, P., and Herzog, E.D. (2013). GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78, 799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gizowski, C., Zaelzer, C., and Bourque, C.W. (2016). Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537, 685–688.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Harmar, A.J., Marston, H.M., Shen, S., Spratt, C., West, K.M., Sheward, W.J., Morrison, C.F., Dorin, J.R., Piggins, H.D., Reubi, J.C., et al. (2002). The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., Kebschull, J.M., Fürth, D., Musall, S., Kaufman, M.T., Churchland, A.K., and Zador, A.M. (2020). BRICseq bridges brain-wide interregional connectivity to neural activity and gene expression in single animals. Cell 183, 2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inouye, S.I.T., and Kawamura, H. (1979). Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus.. Proc Natl Acad Sci USA 76, 5962–5966.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju, D., Zhang, W., Yan, J., Zhao, H., Li, W., Wang, J., Liao, M., Xu, Z., Wang, Z., Zhou, G., et al. (2020). Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Sci Transl Med 12, eaba0769.

    Article  CAS  PubMed  Google Scholar 

  • Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wählby, C., and Nilsson, M. (2013). In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10, 857–860.

    Article  CAS  PubMed  Google Scholar 

  • Kebschull, J.M., Garcia da Silva, P., Reid, A.P., Peikon, I.D., Albeanu, D.F., and Zador, A.M. (2016). High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron 91, 975–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, I.T., Chang, A.S., Manandhar, M., Shan, Y., Fan, J., Izumo, M., Ikeda, Y., Motoike, T., Dixon, S., Seinfeld, J.E., et al. (2015). Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85, 1086–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeGates, T.A., Fernandez, D.C., and Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15, 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Wang, Y., Sun, X., Wang, Y., and Fang, F. (2023). Decoding six basic emotions from brain functional connectivity patterns. Sci China Life Sci 66, 835–847.

    Article  PubMed  Google Scholar 

  • Maywood, E.S., Reddy, A.B., Wong, G.K.Y., O’Neill, J.S., O’Brien, J.A., McMahon, D. G., Harmar, A.J., Okamura, H., and Hastings, M.H. (2006). Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16, 599–605.

    Article  CAS  PubMed  Google Scholar 

  • Mazuski, C., Chen, S.P., and Herzog, E.D. (2020). Different roles for VIP neurons in the neonatal and adult suprachiasmatic nucleus. J Biol Rhythms 35, 465–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mieda, M., Ono, D., Hasegawa, E., Okamoto, H., Honma, K., Honma, S., and Sakurai, T. (2015). Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85, 1103–1116.

    Article  CAS  PubMed  Google Scholar 

  • Mohawk, J.A., Green, C.B., and Takahashi, J.S. (2012). Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35, 445–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, R.Y. (2013). The suprachiasmatic nucleus and the circadian timing system. Prog Mol Biol Transl Sci 119, 1–28.

    Article  PubMed  Google Scholar 

  • Moore, R.Y., and Eichler, V.B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Morris, E.L., Patton, A.P., Chesham, J.E., Crisp, A., Adamson, A., and Hastings, M.H. (2021). Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticindriven circadian network. EMBO J 40, e108614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagoshi, E., Saini, C., Bauer, C., Laroche, T., Naef, F., and Schibler, U. (2004). Circadian gene expression in individual fibroblasts. Cell 119, 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Ni, Y., and Li, J. (2021). Neural mechanisms of social learning and decision-making. Sci China Life Sci 64, 897–910.

    Article  PubMed  Google Scholar 

  • Ono, D., Honma, K., and Honma, S. (2021). Roles of neuropeptides, VIP and AVP, in the mammalian central circadian clock. Front Neurosci 15, 650154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ono, D., Mukai, Y., Hung, C.J., Chowdhury, S., Sugiyama, T., and Yamanaka, A. (2020). The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Sci Adv 6, eabd0384.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, S., Hanna, L., Harding, C., Hayter, E.A., Walmsley, L., Bechtold, D.A., and Brown, T.M. (2020). Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nat Commun 11, 1453.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Reppert, S.M., and Weaver, D.R. (2002). Coordination of circadian timing in mammals. Nature 418, 935–941.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Scammell, T.E., Arrigoni, E., and Lipton, J.O. (2017). Neural circuitry of wakefulness and sleep. Neuron 93, 747–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver, R., Lesauter, J., Tresco, P.A., and Lehman, M.N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810–813.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021). Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18, 100–106.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y.C., Chen, X., Fischer, S., Lu, S., Zhan, H., Gillis, J., and Zador, A.M. (2021). Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat Neurosci 24, 873–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M.N., Viswanathan, S., et al. (2018). Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd, W.D., Fenselau, H., Wang, J.L., Zhang, R., Machado, N.L., Venner, A., Broadhurst, R.Y., Kaur, S., Lynagh, T., Olson, D.P., et al. (2018). A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 21, 717–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd, W.D., Venner, A., Anaclet, C., Broadhurst, R.Y., De Luca, R., Bandaru, S.S., Issokson, L., Hablitz, L.M., Cravetchi, O., Arrigoni, E., et al. (2020). Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 11, 4410.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadnie, C.A., and McClung, C.A. (2017). Circadian rhythm disturbances in mood disorders: insights into the role of the suprachiasmatic nucleus. Neural Plast 2017, 1–28.

    Article  Google Scholar 

  • Varela, L., and Horvath, T.L. (2019). Parallel paths in PVH control of feeding. Neuron 102, 514–516.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, D.K., Takahashi, J.S., and Kay, S.A. (2010). Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72, 551–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh, D.K., Yoo, S.H., Liu, A.C., Takahashi, J.S., and Kay, S.A. (2004). Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14, 2289–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, S., Ma, D., Zhao, M., Xie, L., Wu, Q., Gou, L., Zhu, C., Fan, Y., Wang, H., and Yan, J. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci 23, 456–467.

    Article  CAS  PubMed  Google Scholar 

  • Xu, P., Berto, S., Kulkarni, A., Jeong, B., Joseph, C., Cox, K.H., Greenberg, M.E., Kim, T.K., Konopka, G., and Takahashi, J.S. (2021). NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 109, 3268–3282.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Holmes, T.C., Luo, M.H., Beier, K.T., Horwitz, G.D., Zhao, F., Zeng, W., Hui, M., Semler, B.L., and Sandri-Goldin, R.M. (2020). Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron 107, 1029–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., and Okamura, H. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408–1412.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yoo, S.H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka, S. M., Hong, H.K., Oh, W.J., Yoo, O.J., et al. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101, 5339–5346.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Zeng, Z., Xie, D., Chen, R., Sha, Y., Huang, S., Cai, W., Chen, W., Li, W., Ke, R., et al. (2021). Interneuron origin and molecular diversity in the human fetal brain. Nat Neurosci 24, 1745–1756.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32171157, 31971090), Ministry of Science and Technology of the People’s Republic of China (2021ZD0203400) and Kuanren Talents’ Project of The Second Affiliated Hospital of Chongqing Medical University. We would like to thank Dr. David O’Keefe for careful reading and English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Ju.

Ethics declarations

The author(s) declare that they have no conflict of Interest.

Electronic supplementary material

Supplementary material, approximately 18.8 MB.

Supplementary material, approximately 7.92 MB.

Supplementary material, approximately 9.49 MB.

Supplementary material, approximately 7.39 MB.

Supplementary material, approximately 323 KB.

Supplementary material, approximately 364 KB.

Supplementary material, approximately 22.8 MB.

Supplementary material, approximately 9.41 MB.

Supplementary material, approximately 2.13 MB.

Supplementary material, approximately 29.9 MB.

Supplementary material, approximately 19.9 MB.

Supplementary material, approximately 1.08 KB.

Supplementary material, approximately 9.41 KB.

Supplementary material, approximately 1.30 MB.

Supplementary material, approximately 333 KB.

Supplementary material, approximately 392 MB.

Supplementary material, approximately 280 MB.

Supplementary material, approximately 700 KB.

Supplementary material, approximately 653 KB.

Supplementary material, approximately 672 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Gao, X., Chen, C. et al. Integrated neural tracing and in-situ barcoded sequencing reveals the logic of SCN efferent circuits in regulating circadian behaviors. Sci. China Life Sci. 67, 518–528 (2024). https://doi.org/10.1007/s11427-023-2420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2420-7

Navigation