Skip to main content
Log in

Dynamic changes in butyrate levels regulate satellite cell homeostasis by preventing spontaneous activation during aging

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Almada, A.E., and Wagers, A.J. (2016). Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17, 267–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, K.E., Ricigliano, V.A., Mott, B.M., Copeland, D.C., Floyd, A.S., and Maes, P. (2018). The queen’s gut refines with age: longevity phenotypes in a social insect model. Microbiome 6, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernet, J.D., Doles, J.D., Hall, J.K., Kelly Tanaka, K., Carter, T.A., and Olwin, B.B. (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20, 265–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi, L., Ferrucci, L., Cherubini, A., Maggio, M., Bandinelli, S., Savino, E., Brombo, G., Zuliani, G., Guralnik, J.M., Landi, F., et al. (2016). The predictive value of the EWGSOP definition of sarcopenia: results from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 71, 259–264.

    Article  PubMed  Google Scholar 

  • Bindels, L.B., Beck, R., Schakman, O., Martin, J.C., De Backer, F., Sohet, F.M., Dewulf, E.M., Pachikian, B.D., Neyrinck, A.M., Thissen, J.P., et al. (2012). Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS ONE 7, e37971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borthakur, A., Saksena, S., Gill, R.K., Alrefai, W.A., Ramaswamy, K., and Dudeja, P.K. (2008). Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-κB pathway. J Cell Biochem 103, 1452–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., Muir, A.I., Wigglesworth, M.J., Kinghorn, I., Fraser, N.J., et al. (2003). The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278, 11312–11319.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y., Song, W., Li, J., Jing, Y., Liang, C., Zhang, L., Zhang, X., Zhang, W., Liu, B., An, Y., et al. (2022). The landscape of aging. Sci China Life Sci 65, 2354–2454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casati, M., Ferri, E., Azzolino, D., Cesari, M., and Arosio, B. (2019). Gut microbiota and physical frailty through the mediation of sarcopenia. Exp Gerontol 124, 110639.

    Article  PubMed  Google Scholar 

  • Chakkalakal, J.V., Jones, K.M., Basson, M.A., and Brack, A.S. (2012). The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charette, S.L., McEvoy, L., Pyka, G., Snow-Harter, C., Guido, D., Wiswell, R.A., and Marcus, R. (1991). Muscle hypertrophy response to resistance training in older women. J Appl Physiol 70, 1912–1916.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.J., Ding, H.R., Yao, X.P., and Xie, L.W. (2019). Isolation and culture of single myofiber and immunostaining of satellite cells from adult C57BL/6J mice. Bio Protoc 9, e3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Datzkiw, D., and Rudnicki, M.A. (2020a). Satellite cells in ageing: use it or lose it. Open Biol 10, 200048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Zhang, S., Zeng, B., Zhao, J., Yang, M., Zhang, M., Li, Y., Ni, Q., Wu, D., and Li, Y. (2020b). Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging 12, 4778–4793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan, B., McMurdie, P., Rosen, M., Han, A., Johnson, A., and Holmes, S. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, M.C., Ryu, S., Hao, R., Wang, B., Kapur, M., Fan, C.M., and Yao, T.P. (2014). HDAC4 promotes Pax7-dependent satellite cell activation and muscle regeneration. EMBO Rep 15, 1175–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, C.A., Olsen, I., Zammit, P.S., Heslop, L., Petrie, A., Partridge, T.A., and Morgan, J.E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, B.D., Gilbert, P.M., Porpiglia, E., Mourkioti, F., Lee, S.P., Corbel, S.Y., Llewellyn, M.E., Delp, S.L., and Blau, H.M. (2014). Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20, 255–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., Martin, F.C., Michel, J.P., Rolland, Y., Schneider, S.M., et al. (2010). Sarcopenia: European consensus on definition and diagnosis report of the European Working Group on Sarcopenia in older people. Age Ageing 39, 412–423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Jentoft, A.J., and Sayer, A.A. (2019). Sarcopenia. Lancet 393, 2636–2646.

    Article  PubMed  Google Scholar 

  • Cuff, M.A., Lambert, D.W., and Shirazi-Beechey, S.P. (2002). Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. J Physiol 539, 361–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, N.K., Schwartz, A.J., Barthel, G., Inohara, N., Liu, Q., Sankar, A., Hill, D.R., Ma, X., Lamberg, O., Schnizlein, M.K., et al. (2020). Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab 31, 115–130.e6.

    Article  CAS  PubMed  Google Scholar 

  • Davie, J.R. (2003). Nutritional proteomics in cancer prevention inhibition of histone deacetylase activity. J Nutr 133, 2485–2493.

    Article  Google Scholar 

  • Deschenes, M.R. (2004). Effects of aging on muscle fibre type and size. Sports Med 34, 809–824.

    Article  PubMed  Google Scholar 

  • Dev, S., and Babitt, J.L. (2017). Overview of iron metabolism in health and disease. Hemodial Int 21, S6–S20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, H., Chen, S., Pan, X., Dai, X., Pan, G., Li, Z., Mai, X., Tian, Y., Zhang, S., Liu, B., et al. (2021). Transferrin receptor 1 ablation in satellite cells impedes skeletal muscle regeneration through activation of ferroptosis. J Cachexia Sarcopenia Muscle 12, 746–768.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donohoe, D.R., Collins, L.B., Wali, A., Bigler, R., Sun, W., and Bultman, S.J. (2012). The warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48, 612–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, Y., Zheng, C., Zheng, J., Ma, L., Ma, X., Zhong, Y., Zhao, X., Li, F., Guo, Q., and Yin, Y. (2023). Profiles of muscular amino acids, fatty acids, and metabolites in Shaziling pigs of different ages and relation to meat quality. Sci China Life Sci 66, 1323–1339.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, N.A., Wang, Y.X., and Rudnicki, M.A. (2015). Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142, 1572–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbiano, S., Suárez-Zamorano, N., Chevalier, C., Lazarević, V., Kieser, S., Rigo, D., Leo, S., Veyrat-Durebex, C., Gaïa, N., Maresca, M., et al. (2018). Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab 28, 907–921.e7.

  • Fielding, R.A., Reeves, A.R., Jasuja, R., Liu, C., Barrett, B.B., and Lustgarten, M.S. (2019). Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults. Exp Gerontol 127, 110722.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frampton, J., Murphy, K.G., Frost, G., and Chambers, E.S. (2020). Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2, 840–848.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., and Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemikonakli, G., Mach, J., and Hilmer, S.N. (2021). Interactions between the aging gut microbiome and common geriatric giants: polypharmacy, frailty and dementia. J Gerontol A Biol Sci Med Sci 76, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, T.S., Shanahan, F., and O’Toole, P.W. (2022). The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol 19, 565–584.

    Article  PubMed  PubMed Central  Google Scholar 

  • He, Y., Wu, W., Zheng, H.M., Li, P., McDonald, D., Sheng, H.F., Chen, M.X., Chen, Z. H., Ji, G.Y., Zheng, Z.D.X., et al. (2018). Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24, 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  • Henagan, T.M., Stefanska, B., Fang, Z., Navard, A.M., Ye, J., Lenard, N.R., and Devarshi, P.P. (2015). Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 172, 2782–2798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, X., Isern, J., Campanario, S., Perdiguero, E., Ramírez-Pardo, I., Segalés, J., Hernansanz-Agustín, P., Curtabbi, A., Deryagin, O., Pollán, A., et al. (2022). Mitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy. Cell Stem Cell 29, 1298–1314.e10.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Wang, T., and Jin, F. (2016). Alzheimer’s disease and gut microbiota. Sci China Life Sci 59, 1006–1023.

    Article  CAS  PubMed  Google Scholar 

  • Kalkan, H., Pagano, E., Paris, D., Panza, E., Cuozzo, M., Moriello, C., Piscitelli, F., Abolghasemi, A., Gazzerro, E., Silvestri, C., et al. (2023). Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy. EMBO Mol Med 15, e16225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, C.J., Zheng, L., Campbell, E.L., Saeedi, B., Scholz, C.C., Bayless, A.J., Wilson, K. E., Glover, L.E., Kominsky, D.J., Magnuson, A., et al. (2015). Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial hif augments tissue barrier function. Cell Host Microbe 17, 662–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., and Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345.

    Article  CAS  PubMed  Google Scholar 

  • Kosek, D.J., Kim, J., Petrella, J.K., Cross, J.M., and Bamman, M.M. (2006). Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101, 531–544.

    Article  CAS  PubMed  Google Scholar 

  • Lahiri, S., Kim, H., Garcia-Perez, I., Reza, M.M., Martin, K.A., Kundu, P., Cox, L.M., Selkrig, J., Posma, J.M., Zhang, H., et al. (2019). The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med 11, 1–6.

    Article  Google Scholar 

  • Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y., Thompson, W., Kirkland, J.L., and Sandri, M. (2019). Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99, 427–511.

    Article  PubMed  Google Scholar 

  • Li, J.M., Han, X.L., Zhang, X.X., and Wang, S.X. (2019a). Spatiotemporal evolution of global population ageing from 1960 to 2017. BMC Public Health 19, 127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Pan, X.H., Pan, G.H., Song, Z.J., He, Y., Zhang, S.S., Ye, X.R., Yang, X., Xie, E.J., Wang, X.H., et al. (2020a). Transferrin receptor 1 regulates thermogenic capacity and cell fate in brown/beige adipocytes. Adv Sci 7, 1903366.

    Article  CAS  Google Scholar 

  • Li, L., Fang, Z., Liu, X., Hu, W., Lu, W., Lee, Y.K., Zhao, J., Zhang, H., and Chen, W. (2020b). Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes. PLoS ONE 15, e0231865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Rozo, M., Yue, S., Zheng, X., J. Tan, F., Lepper, C., and Fan, C.M. (2019b). Muscle stem cell renewal suppressed by GAS1 can be reversed by GDNF in mice. Nat Metab 1, 985–995.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W., Wu, X., Hu, X., Wang, T., Liang, S., Duan, Y., Jin, F., and Qin, B. (2017). Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60, 1223–1233.

    Article  PubMed  Google Scholar 

  • Liao, X., Wu, M., Hao, Y., and Deng, H. (2020). Exploring the preventive effect and mechanism of senile sarcopenia based on “gut-muscle axis”. Front Bioeng Biotechnol 8, 590869.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, R., Sun, Y., Mu, P., Zheng, T., Mu, H., Deng, F., Deng, Y., and Wen, J. (2020). Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Biochem Pharmacol 175, 113868.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B.D., Huang, L.J., Liu, Z.H., Pan, X.H., Cui, Z.B., Pan, J.Y., and Xie, L.W. (2022). EasyMicroPlot: an efficient and convenient r package in microbiome downstream analysis and visualization for clinical study. Front Genet 12, 803627.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Z.B., Chen, Z.C., Guo, H.W., He, D.P., Zhao, H.R., Wang, Z.Y., Zhang, W., Liao, L., Zhang, C., and Ni, L. (2016). The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct 7, 4869–4879.

    Article  CAS  PubMed  Google Scholar 

  • López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2023). Hallmarks of aging: an expanding universe. Cell 186, 243–278.

    Article  PubMed  Google Scholar 

  • Maioli, T.U., Borras-Nogues, E., Torres, L., Barbosa, S.C., Martins, V.D., Langella, P., Azevedo, V.A., and Chatel, J.M. (2021). Possible benefits of faecalibacterium prausnitzii for obesity-associated gut disorders. Front Pharmacol 12, 1–3.

    Article  Google Scholar 

  • Manickam, R., Oh, H.Y.P., Tan, C.K., Paramalingam, E., and Wahli, W. (2018). Metronidazole causes skeletal muscle atrophy and modulates muscle chronometabolism. Int J Mol Sci 19, 2418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariat, D., Firmesse, O., Levenez, F., Guimarǎes, V.D., Sokol, H., Doré, J., Corthier, G., and Furet, J.P. (2009). The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 19, 123.

    Article  Google Scholar 

  • Marroncelli, N., Bianchi, M., Bertin, M., Consalvi, S., Saccone, V., De Bardi, M., Puri, P.L., Palacios, D., Adamo, S., and Moresi, V. (2018). HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 8, 1–5.

    Article  CAS  Google Scholar 

  • Martel, G.F., Roth, S.M., Ivey, F.M., Lemmer, J.T., Tracy, B.L., Hurlbut, D.E., Metter, E. J., Hurley, B.F., and Rogers, M.A. (2006). Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp Physiol 91, 457–464.

    Article  PubMed  Google Scholar 

  • Nay, K., Jollet, M., Goustard, B., Baati, N., Vernus, B., Pontones, M., Lefeuvre-Orfila, L., Bendavid, C., Rué, O., Mariadassou, M., et al. (2019). Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am J Physiol Endocrinol Metab 317, E158–E171.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, A.G., Sundh, D., Bäckhed, F., and Lorentzon, M. (2018). Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med 284, 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, N.E., Kotarsky, K., Owman, C., and Olde, B. (2003). Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303, 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  • Pröbstel, A.K., Zhou, X., Baumann, R., Wischnewski, S., Kutza, M., Rojas, O.L., Sellrie, K., Bischof, A., Kim, K., Ramesh, A., et al. (2020). Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis. Sci immunol 5, eabc7191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Przewłócka, K., Folwarski, M., Kaźmierczak-Siedlecka, K., Skonieczna-Żydecka, K., and Kaczor, J.J. (2020). Gut-muscle axis exists and may affect skeletal muscle adaptation to training. Nutrients 12, 1451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangan, P., Choi, I., Wei, M., Navarrete, G., Guen, E., Brandhorst, S., Enyati, N., Pasia, G., Maesincee, D., Ocon, V., et al. (2019). Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep 26, 2704–2719.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, W., Yu, B., Yu, J., Zheng, P., Huang, Z., Luo, J., Mao, X., He, J., Yan, H., Wu, J., et al. (2022). Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post-weaning diarrhea in piglets. Sci China Life Sci 65, 2062–2075.

    Article  CAS  PubMed  Google Scholar 

  • Sanna, S., van Zuydam, N.R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., Mujagic, Z., Masclee, A.A.M., Jonkers, D.M.A.E., Oosting, M., et al. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51, 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheiman, J., Luber, J.M., Chavkin, T.A., MacDonald, T., Tung, A., Pham, L.D., Wibowo, M.C., Wurth, R.C., Punthambaker, S., Tierney, B.T., et al. (2019). Metaomics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 25, 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherbov, S., and Sanderson, W.C. (2016). New approaches to the conceptualization and measurement of age and aging. J Aging Health 28, 1159–1177.

    Article  PubMed  Google Scholar 

  • Shefer, G., Van de Mark, D.P., Richardson, J.B., and Yablonka-Reuveni, Z. (2006). Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294, 50–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinpo, K., Kikuchi, S., Sasaki, H., Ogata, A., Moriwaka, F., and Tashiro, K. (2000). Selective vulnerability of spinal motor neurons to reactive dicarbonyl compounds, intermediate products of glycation, in vitro: implication of inefficient glutathione system in spinal motor neurons. Brain Res 861, 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Siddharth, J., Chakrabarti, A., Pannérec, A., Karaz, S., Morin-Rivron, D., Masoodi, M., Feige, J.N., and Parkinson, S.J. (2017). Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats. Aging 9, 1698–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa-Victor, P., García-Prat, L., and Muøoz-Cánoves, P. (2022). Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 23, 204–226.

    Article  CAS  PubMed  Google Scholar 

  • Stearns-Reider, K.M., D’Amore, A., Beezhold, K., Rothrauff, B., Cavalli, L., Wagner, W. R., Vorp, D.A., Tsamis, A., Shinde, S., Zhang, C., et al. (2017). Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 16, 518–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ticinesi, A., Lauretani, F., Milani, C., Nouvenne, A., Tana, C., Del Rio, D., Maggio, M., Ventura, M., and Meschi, T. (2017). Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients 9, 1303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ticinesi, A., Mancabelli, L., Tagliaferri, S., Nouvenne, A., Milani, C., Del Rio, D., Lauretani, F., Maggio, M.G., Ventura, M., Meschi, T., et al. (2020). The gut-muscle axis in older subjects with low muscle mass and performance: a proof of concept study exploring fecal microbiota composition and function with shotgun metagenomics sequencing. Int J Mol Sci 21, 8946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentino, T.R., Vechetti Jr, I.J., Mobley, C.B., Dungan, C.M., Golden, L., Goh, J., and McCarthy, J.J. (2021). Dysbiosis of the gut microbiome impairs mouse skeletal muscle adaptation to exercise. J Physiol 599, 4845–4863.

    Article  CAS  PubMed  Google Scholar 

  • Varian, B.J., Goureshetti, S., Poutahidis, T., Lakritz, J.R., Levkovich, T., Kwok, C., Teliousis, K., Ibrahim, Y.M., Mirabal, S., and Erdman, S.E. (2016). Beneficial bacteria inhibit cachexia. Oncotarget 7, 11803–11816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdijk, L.B., Gleeson, B.G., Jonkers, R.A.M., Meijer, K., Savelberg, H.H.C.M., Dendale, P., and van Loon, L.J.C. (2009). Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol Ser A Biol Sci Med Sci 64A, 332–339.

    Article  CAS  Google Scholar 

  • von Haehling, S., Morley, J.E., and Anker, S.D. (2010). An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1, 129–133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Zhang, P., Chen, S., Duan, H., and Xie, L. (2022). Microbiota and gut health: promising prospects for clinical trials from bench to bedside. Adv Gut Microbio Res, 2022, 1–17.

    Article  Google Scholar 

  • Xie, L., Yin, A., Nichenko, A.S., Beedle, A.M., Call, J.A., and Yin, H. (2018). Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration. J Clin Invest 128, 2339–2355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav, H., Lee, J.H., Lloyd, J., Walter, P., and Rane, S.G. (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288, 25088–25097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H., Pasut, A., Soleimani, V.D., Bentzinger, C.F., Antoun, G., Thorn, S., Seale, P., Fernando, P., van IJcken, W., Grosveld, F., et al. (2013a). MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab 17, 210–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H., Price, F., and Rudnicki, M.A. (2013b). Satellite cells and the muscle stem cell niche. Physiol Rev 93, 23–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, B., Yang, H., Wu, J., Wang, J., Ru, W., Cheng, J., Huang, Y., Lan, X., Lei, C., and Chen, H. (2022). circSVIL regulates bovine myoblast development by inhibiting STAT1 phosphorylation. Sci China Life Sci 65, 376–386.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S.S., Wu, P.L., Tian, Y., Liu, B.D., Huang, L.J., Liu, Z.H., Lin, N., Xu, N.N., Ruan, Y.T., Zhang, Z., et al. (2021). Gut microbiota serves a predictable outcome of short-term low-carbohydrate diet (LCD) intervention for patients with obesity. Microbiol Spectr 9, e0022321.

    Article  PubMed  Google Scholar 

  • Zhang, X., Huang, P., Dou, Q., Wang, C., Zhang, W., Yang, Y., Wang, J., Xie, X., Zhou, J., and Zeng, Y. (2020). Falls among older adults with sarcopenia dwelling in nursing home or community: a meta-analysis. Clin Nutr 39, 33–39.

    Article  PubMed  Google Scholar 

  • Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., et al. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, P., Li, Y.F., Wu, J., Zhang, H.P., Huang, Y., Tan, X.M., Pan, J.X., Duan, J.J., Liang, W.W., Yin, B.M., et al. (2019). Perturbed microbial ecology in myasthenia gravis: evidence from the gut microbiome and fecal metabolome. Adv Sci 6, 1901441.

    Article  CAS  Google Scholar 

  • Zheng, Z., and Wang, B. (2021). The gut-liver axis in health and disease: the role of gut microbiota-derived signals in liver injury and regeneration. Front Immunol 12, 775526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Zhou, Z., Huang, T., Zhang, Z., Li, W., Ling, Z., Jiang, T., Yang, J., Yang, S., Xiao, Y., et al. (2022). Mapping and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs. Sci China Life Sci 65, 1517–1534.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515020046), “GDAS” Project of Science and Technology Development (2021GDASYL-20210102003, 2018GDASCX-0102), the National Natural Science Foundation of China (82072436, 32130099), Open Program of Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics (GPKLMMD-OP202102), Outstanding Youth Fund of Hunan Natural Science Foundation (2021JJ20045), the Outstanding Youth Fund of Hunan Natural Science Foundation (2021JJ20045), and Youth Innovation Promotion Association of Chinese Academy of Sciences (2022370). This project spanned more than five years, with the initial testing of the original hypothesis and subsequent adjustments to the plan. Dr. Shujie Chen made significant contributions to this project, including repeatedly treating the animals, inducing muscle injuries, and isolating and culturing single myofibers. We also appreciate the contributions of Dr. Bingdong Liu, who was instrumental in the creation of the original hypothesis, discussions regarding data feasibility, and the collection of samples at the outset of the project. Ms. Liujing Huang joined our lab in the summer of 2020 and swiftly mastered data analysis. Her significant contributions during the final stages of data analysis, preparation, image generation, manuscript drafting, revision, and discussion were instrumental, especially her distinctive perspective on image color matching and selection. The invaluable contributions of these three co-first authors were vital to the novel discovery made in this study. We’re also appreciative of the generous help and assistance from others in measurements, data collection, and even the donation of aged mice for our study, particularly during the manuscript revision phase. We extend our thanks to the entire lab team and support staff for their unwavering support and dedication to the project. Without their hard work and commitment, this study would not have been possible. We appreciate Mr. Wei Zhao from BGI-Shenzhen for assisting us with the RNA sequencing and Ms. Baoli Wei from Jiangsu Gene & Peace CO. LTD for donating the adult (~10 wk old) and aged (~100 wk old) mice during the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Wan, Yulong Yin or Liwei Xie.

Ethics declarations

The author(s) declare that they have no conflict of interest. All animal experiment procedures were approved by the Institute Animal Care Use Committees of the Institute of Microbiology (Animal Use Protocol number: GT-IACUC201704071).

Supplementary Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Huang, L., Liu, B. et al. Dynamic changes in butyrate levels regulate satellite cell homeostasis by preventing spontaneous activation during aging. Sci. China Life Sci. 67, 745–764 (2024). https://doi.org/10.1007/s11427-023-2400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2400-3

Navigation